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By completed this project, we have achieved two important results. First, we contributed to the development of 
computational linguistics with our DMRS toolset. It provides a much easier way to do grammar comparison and 
a mechanism to store and search over a large number of DMRS graphs. Second, we have demonstrated that 
question-answering is practically possible with our DMRS persistent framework and DMRSQL. 
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1 Introduction 

 Purpose 1.1
Developing strong artificial intelligence systems is an open problem which a lot of researchers are trying 

to solve. One of the sub problems of strong artificial intelligence is question-answering machine.  If we are able 

to build a machine which understands questions in human nature language and provides answers, we are one 

step closer to the strong AI solution. Recently, there are a lot of developments in computational linguistics and 

those are forming the foundation for further development of software solutions with deep-linguistic analysis 

capability. However, there are still very few knowledge-based solutions built on deep linguistic techniques in 

the market. In this project, we propose a novelty approach for building a question-answering machine which is 

practical enough for real world applications. 

 Scope 1.2
Due to the limitations of time and resources, we only built a prototype as a proof of concept for the 

approach we are proposing in this paper. Our focus at this early milestone of the project is providing the core 

functions of the QA framework as well as referring to the important literatures, resources and research 

directions for further developments. 

 Most of the efforts have been spent on crafting the linguistic research toolset: DMRS persistent 

mechanism, DMRS visualisation and DMRS indexing & retrieval methods. 

  Methods 1.3
The key theories and methods have been used in this paper include, but not limited to, English 

Resource Grammar, WordNet, DMRS, relational database, thick web-client, graph search, parallel and 

distributed processing.  

 Limitations 1.4
 The proposed DMRS Query Language is not fully implemented. We implemented the DMRSQL just to 

proof that the indexing are working fine.  

 The cluster search function is only accessible via local terminal interface and it only supports parallel 

search. A web service interface is required to enable distributed graph search. 

 We only optimised the performance of the system to perform search over databases which is smaller 

than 2 GB. Performing search on larger databases can be very slow, especially when we’re searching 

for common lemmata. In order to use this solution in practical uses, we still need to solve some I/O 

bottlenecks and indexing problems. 

 The module to convert nature language queries into DMRS queries is omitted at the moment. 

 Assumptions 1.5
To simplify the problem, we assume that any knowledge is explicitly expressed within a single sentence. 

Furthermore, we also assume that there is no sarcasm in the data source. Having these two assumptions, we 

assume that answers can be retrieved based on performing grammar & semantic analysis on textual data, 

without using any background knowledge or further co-reference or summarisation analysis. 
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2 Literature Review 
Currently, the method is being used for question-answering is pattern-based matching, often relies on 

regular expressions, as introduced by (Daniel and James 2009, 812-821). For examples: 

Table 1: Some answer-extraction patterns (Speech and Language Processing 2009, 819) 

Pattern Question Answer 

<AP> such as <QP> What is autism? … developmental disorders such 
as autism … 

<QP>, a <AP> What is a caldera? …the Long Valley caldera, a 
volcanic crater 19 miles long … 

Although these kind of rules can be hand-coded or using machine learning, this method still relies on text 

surface analysis, and mostly ignore the grammar and semantics information the text data carry. From our 

observation, the fact that this approach is accepted widely is due to they can deliver results using cheap 

computational power. 

Personally, we aren’t happy with just the approach above, and did further research. That led us to more 

methods such as morphological alternations, lexical alternations, passage retrieval with machine learning, etc. 

(Sanda and Dan 2004, 561-582). These methods have been used in several TREC QA tracks. 

Surface text retrieval, even with token expansion or machine learning, is not promising enough to us. The 

best result achieved in TREC QA 2006 is 57.8 % for factoid questions (Bob March 25, 2008). Instead of working 

out yet another information retrieval based method, we had chosen a different research direction: 

computational linguistics. 

 LinGO ERG 2.1
“ERG is one of the most broad-coverage and linguistically precise grammar library of English”. Until July 

2003, ERG comes with a “hand-built lexicon of around 10,000 words” and it can “produce semantic 

representations for about 83 per cent of the utterances in a corpus of transcriptions of some 10,000 utterances, 

which vary in length from one word to more than thirty words”. (LinGO ERG n.d.). Moreover, we have found 

that there’s effort to use ERG to perform deep linguistic analysis on English Wikipedia corpus (Dan, Stephan 

and Gisle 2010). Although there are a lot of post-processing need to be done before the parsed results can be 

used, this suggested a promising direction to our research. 

 Minimal Recursion Semantics 2.2
Using ERG parsing rules, we can obtain the parsed structures of sentences. There are many ways to 

represent this parsed information. Syntactic derivation tree is one of the examples. However, different 

methods represent structural ambiguities in different level of efficiency. Several theories have been 

introduced, and among those, Minimal Recursion Semantics (MRS) is gaining popularity, especially in recent 

years. 

MRS is a meta-language which enables semantic representation. The most important characteristic of 

MRS is its computational efficiency. MRS itself is flat representation, yet it’s able to express scopes when it is 

necessary. Normally, scope information is ignored but we can retrieve that in situation where scope 

information is needed. 

This is an example which demonstrates how MRS represents different interpretations of the sentence 

“Every dog chases some white cats” (Kostadin n.d.). If we understand the sentence as “(There are) some white 

cats (which) every dog chases (those white cats)”. We can represent in MRS (simplified format) like this 

some(y, white(y) ^ cat(y), every(x, dog(x), chase(x,y))) 
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Figure 1: MRS for (There are) some white cats (which) every dog chases (them) 

However, if we want to interpret the sentence in another way, which is “(each of) every dog (will) chase some 

white cats”, then we have this representation: 

every(x, dog(x), some(y, white(y) ^ cat(y), chase(x, y))) 

 

Figure 2: MRS for (each of) every dog (will) chase some white cats 

 Dependency MRS 2.3
Although MRS is very efficient in representing semantics, its readability is still low, especially for 

“consumers of the representation, human annotators or parser comparison” (Ann 3 April 2009). DMRS is the 

answer for this problem. Unlike the original MRS, Dependency MRS (DMRS) contains only predicates (or 

nodes) without variables. The relations or dependency will be represented by introducing links between 

predicates. This nature makes visualisation of DMRS become very simple. We can think of a DMRS 

representation of one sentence as a directed graph with predicates (nodes) as vertices and the links between 

them are edges. Searching information based on sentences’ structure can be done easily by using a graph 

search algorithms. 

 WordNet 2.4
“WordNet is an on-line lexical reference system whose design is inspired by current psycholinguistic 

theories of human lexical memory”. Since 1985, WordNet has been hand-coded by linguists and psychologists 

and evolved into a massive lingua-ontology with more than 206,941 Word-Sense pairs (WordNet 3.0 database 

statistics n.d.) 

WordNet not only contains precise information about different senses of words, but also their type 

(nouns, verbs, adjectives, etc.), synonym, antonym, hyponym, etc. Therefore, using WordNet, we can perform 

various linguistic operations such as alternate lemma searching, query expansion. We also can refer to 

WordNet senses when performing meaning annotation. 

some(y) 

white(y), 
cat(y) 

every(x) 

dog(x) 

chase(x,y) 

every(x) 

dog(x) 

some(y) 

white(y),cat(y) 

chase(x,y) 
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Figure 3: Semantic relations in WordNet (George, Richard and Christiane August 1993) 

  Frameworks and Toolsets 2.5
There are several tools are being used to take input as ERG grammar rules and text documents to 

produce parse tree and MRS, for example PET system by DELPH-IN group (Delph-in PET n.d.). We also have 

accessed to an open source tool written in Python to convert generated MRS representations into DMRS 

representations. However, we lack of a framework to handle DMRS data efficiently. Currently DMRS data are 

stored in XML format in text files without any indexing. In addition, a visualisation tool for visualising DMRS is 

also needed for grammar debugging or annotating. 

 Motivations 2.6
The dominated method for developing information retrieval system until a decade ago (before the year 

2000) is “tokens hacking”. Documents are broken into bags of tokens and indexed with different frequencies 

(term frequency, inverted document frequency, etc.).  After that these pre-calculated frequencies are 

combined using different methods to retrieve needed information. However, these methods only work on the 

surface of corpus and ignore the grammar & semantic information (There are attempts to take some kinds of 

semantic into consideration such as n-gram with sliding windows but those are still classified as surface-based 

methods). 

Let’s say we want to retrieve information based on given tokens which related to each other. With 

surface based method, most of the time we’ll perform a search to find documents which contains those tokens 

within some sliding windows. This method doesn’t guarantee that the results contain exactly the information 

we are looking for. A sentence might be ignored if the distance between two tokens is larger than the window 

size. In addition, “bag of words” method doesn’t take grammar into account, for example: “Mary kills John” is 

equivalent to “John kills Mary”. We believe that deep linguistic analysis method can help us to overcome those 

existing problems. 

 Challenges 2.7
The theories and techniques mentioned above can be used to develop our Question-Answering Machine. 

Applying ERG parser on collected text data, we are able to generate MRS data and then convert them into 

DMRS format. After that we can search for answers in text-based data by performing graph search at the 

DMRS level. 

However, as pointed out in section 2.5, we lack of toolsets and software frameworks to develop this 

system. Storing DMRS in text format without any indexing method means that searching are extremely slow 

and impractical. We need to find a better way to represent and store DMRS data. This representation must be 

search friendly, ideally with indexing feature. 
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Another problem is we don’t have a mechanism to compare different DMRS representations and 

detecting parsing errors. ERG is not bug-free and we need to debug parsed structures. But displaying DMRS in 

XML-format is not human friendly and take much longer time to figure out what went wrong. Therefore 

building a DMRS visualisation tool is one of our top priorities. 

A query method enables efficient travelling and searching on massive amount of DMRS data is our third 

target. Containing deep parsed linguistic structure of text documents, DMRS data are often bigger than the 

surface character streams of the documents. So the next challenge will be designing a good retaining and 

indexing strategy. 

 Feasibility Study 2.8
Due to the mentioned challenges we faced and the limitations of time and resources, we decided to scale 

down the project scope. We didn’t aim at providing a full working solution in the first stage of this project. 

Instead, we only develop the framework with important core functions. The remaining features will be 

implemented as proof of concepts. 

As ERG, PET and MRS2DMRS conversion tools are available; generating DMRS from raw text corpus is 

technically feasible. We need to consider the storing, visualising and the searching mechanisms. For storing 

DMRS structures, a relational database engine can be use, as this is the most widely used data storage 

mechanism. Most of the relational database engines come with T-SQL query language, indexing feature, and 

data view so handling data with RDBMS is much easier compare to developing a data manager from scratch. 

Graphical user interface on computers today are very powerful and visualisation DMRS data is not a big 

problem. What’s left is allocating the time to develop the visualisation tool only. 

The last thing to consider here is DMRS query language. Although T-SQL query language is available, 

writing SQL queries is not simple plus it’s meant for searching over table structures, not graphs. More than 

that, query DMRS base on T-SQL will make our system depends on a particular data persistent layer 

underneath thereby losing the design portability. To overcome this problem, we will introduce another simpler 

query language to implement search function.  
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3 System Design 

 Knowledge Representation 3.1
In section 1.5, we assumed that the textual data contains knowledge and knowledge can be expressed 

within a sentence. So, the knowledge to be managed in this situation is the extracted DMRS graphs. We 

represent the whole knowledge base as the available corpora; each contains a number of documents. Each 

document contains a number of sentences and each sentence has some valid representations expressed in 

DMRS format. 

 

Figure 4: Knowledge Representation 

Below is the formal class diagram emphasises our knowledge representation. 

 

Figure 5: Class diagram of knowledge representation 
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 Knowledge Retaining 3.2
After formally defining the structure of knowledge representation, knowledge retaining is simply a 

process of serialising the data entities into a storable format (binary stream, text stream, database rows, etc.) 

and transferring them to the designated storage location. Among the retaining methods, two possibilities of 

storing the DMRS data into storage devices are taken into consideration: using text files and database engine. 

Although writing data to text files sometimes can be simpler than to a database, this method requires manual 

indices, more difficult to maintain and low retrieval performance compare to a database engine. 

After carefully evaluating the situation, we decided to use both of the mentioned methods. We store 

raw DMRS data in text files and store indexed DMRS data in SQL database. Text file is appropriate when we 

want to retrieve the original raw file of a particular DMRS representation while database can achieve faster 

indexing and retrieval performance. 

 Knowledge Retrieval 3.3
In this system, knowledge retrieval is performing DMRS searches given a particular DMRS query. As one 

can observe from DMRS structures, predicates or nodes are mostly extracted from the original string (constant 

strings or lemmata) except grammar predicates. Therefore, the number of nodes generated from a sentence 

should not be too different from the number of tokens extracted from the words. A rough upper bound can be 

estimated as three or four times more than the number of tokens. Performing search in a graph with less than 

a few hundred of nodes can be considered a small graph search problem. 

Let refer back to section 1.5 where we assumed that sentences in the corpus are independent, and any 

knowledge is expressed within a sentence. Hence a search task performed on a corpus can be decomposed 

into many independent search tasks where each task handles a small graph. By observing this characteristic, 

we recognised that the graph search problem we are trying to solve in this project is parallel search in nature. 

We also need a language to represent our DMRS query. As discussed in section 2.8, T-SQL is not suitable 

to write our query because we don’t want to tight couple our design with any particular storage mechanism. 

Thus we have introduced DMRS Query Language: DMRSQL. 

The query language is simple and contains many borrowed ideas from DMRS representation. We can 

form a query to search for nodes by using “?” (any node), “L:lemma” for lemmata, “C:Carg” for constant 

strings, or “G:named_rel” for grammar predicates. Any node search clause X without the prefix L:, C: or G: will 

be treated as (L:X OR C:X). We also can search for links with ([fromnode] [post]/[rargname] [tonode]). 

Additionally, we can join the search clauses using Boolean operators (AND, OR, NOT) to form more complex 

queries. 

For example, if we want to search for a sentence with a constant string “Torvalds”, the string “Torvalds” 

links to a lemma “develop” and lemma “develop” links to the constant string “Linux”, and a node “scratch” 

(either a lemma or a constant string), we can use the following query: 

(C:Torvalds) AND (C:Torvalds / L:develop) AND (L:develop / C:Linux) AND scratch 
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 System Architecture 3.4
Finally, the system architecture is designed as in Figure 6. 

 

Figure 6: System architecture 

Our system has three main modules: data parsing module (consists of Sentence Parser and DMRS Parser), 

graph search module and visualisation module. 

When there’re new documents to be added to the system we’ll convert all of them into pure text format. 

Next, we’ll perform sentence segmentation to segment each document into a list of sentences. After that, we 

will use Sentence Parser (with ERG and WordNet) to convert those textual data into MRS format. Finally we 

use the tool MRS-to-DMRS to convert MRS to DMRS format with nodes and links and then save them to 

database. 

Now, the knowledge base is ready to use. When a user enters a query in nature language, for example 

“What is QAM?” this query will be converted into machine understandable format, in this case is DMRS query 

language “(QAM EQ/ ?)”. That means: find any sentence with an EQ link from a node which is a constant string 

“QAM” to any other node. This query will be passed into Graph Search module to perform search and the 

results (the list of the nodes represent the question mark) will be displayed on user screen. Currently in the 

prototype, we don’t implement the nature language query parser and we only support query written in DMRS 

query format. The DMRS query language is not fully implemented but only node search, link search and 

Boolean AND operator.  

The knowledge-base administrator can use visualisation tool to visualise DMRS contents stored in the 

database and perform grammar comparison and grammar debugging. 
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4 Implementation 
We have implemented the system as a web application using Python and Django web framework. 

Knowledge representation is done using OOP. When we want to store some information, they will be 

serialised and then stored into SQLite databases. 

The visualisation module is one of its own kind. Since nobody has implemented this visualisation before, 

we have to build it from scratch with HTML, CSS, JavaScript and Raphael web graphic library. 

The DMRS query parser and the SQLite query converter also needs to be coded as well. To build the 

parallel search cluster, we relied on Python multithread programming technique. 

 Implementation Packages 4.1

 

Figure 7: System Package Design 

 Implementation Challenges 4.2
As easy as it might sound, we actually faced a lot of challenges during the implementation phase. The 

first problem is the parse optimisation. After text data have been parsed to DMRS in text format, we still need 

to parse them one more time from text file to store into the database. And this task slows down the whole 

process. DMRS text-based contents are stored in many files on storage devices, so we have to perform many 

I/O actions in order to read the whole dataset to store into database.  

Writing efficient database insert script is another challenge. At the beginning, we need to run the import 

script for a few hours to store the test document “the Cathedral and the Bazaar”. After we have access to the 

real data, the ACL conference paper corpus with more than 25000 documents, we realised that it’s impossible 

to convert the data before the project deadline with that slow parser. After many tweaks and hacks, the parser 

can import the whole ACL corpus into our system within a day! 

 The text-based format reveals another I/O problem. When we have too many files in a directory (even a 

few KB in size as DMRS files), reading and processing files becomes very slow. We solved this problem by 

create compressed archives with very low compress ratio for each corpus and retrieve from this archive when 

we need access to the raw DMRS data.  

Next issue is the big data nature of this project. Since we have to analyse and store the deep structures of 

each sentence in a document as well as the related indices. So in total a document with a few hundreds 

sentences takes roughly 3 MB of storage in database. The whole ACL corpus is about 75 GB of data. On the 

Web-based User Interface 

Data Import Tool 

Visualisation Tool 
Search Interface 

Data Access Layer 

SQL Data Access Connector XML Data Access Connector 

SQLite DB 1 SQLite DB 2 XML Package 1 XML Package 2 

Search Clusters 
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machine we used to develop this system which has 2 GB of RAM, a dual core 1.6 GHz CPU and a HDD operates 

at 5400 rpms, it’s extremely difficult to handle this huge amount of data, even with help of the database 

indexing. We have tried to solve this problem with parallel processing, but it doesn’t help much in this 

situation where the actual bottleneck is the HDD reading speed (20 MB/s).  

 Design Validation 4.3
We have consulted several reliable sources to validate our system design. Throughout our project life 

cycle, we have frequently attended discussions with professor Francis Bond (NTU), Mr Mathieu Morey and our 

supervisor Ms Fan Zhenzhen to refine the conceptual design of our system. We took minute notes after every 

meeting and produce a check list to ensure we haven’t left out any suggestions. The DMRS representation and 

database schema follow the DMRS DTD specification provided by Ms Zina Pozen and have been double-

checked every time we are notified about any update. 

 Verification & System Testing 4.4
We have used several methods to test the implemented system. Python Unit Test is adopted to test tasks 

which can be performed using automation test such as testing DMRSQL parser. For search feature, we used a 

set of known test cases to ensure we’ve got correct results. The test results given in this section mostly 

retrieved from the document “the Cathedral and the Bazaar” and ACL-X corpus. 

4.4.1 Contrasting DL-based method and surface-based method 

Assume we want to find information about training data. A surface search lemmatized query is “(train) 

AND (data)”, while a lemmatized DL-based query is “(train / data)”.  

We executed the first query and found 160 sentences: 

 

Figure 8: Surface search result for (train) AND (data) 

In the results list, we found the following sentences: 

 

Figure 9: Surface search return irrelevant results 

As we can see, the sentences 3961 and 4053 are not about training data, although they contain the 

lemma “train” and “data”. 

Now, we perform the DL-based query, which returns only 24 sentences. 
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Figure 10: DL-based search results for (train / data) 

All of these 24 sentences are about training data. One more interesting fact is the two lemmata don’t 

necessary stay next to each other, as given in the sentences 5785 and 5895 below: 

 

Figure 11: DL-based method returns "training and testing data" 

 Similarly, we can perform another search for “parse document”. A DL-based query “(parse / document)” 

return 3 sentences with “…documents are parsed…”, “…parsing documents…”, “…each individual document 

is reparsed…”. This result has demonstrated the ability to search for information based on deep grammar & 

context analysis. 

 

Figure 12: DL-based query (parse / document) 

In contrast, a surface matching with “(parse and document)” returns 13 sentences, which contains 

irrelevant sentences such as “The documents are uniformly formatted into SGML, with a DTD included for each 

collection to allow easy parsing.” or “Different processes, such as tagging or parsing, can be applied to 

documents or collections and the results compared and analysed.” 

 

 

Figure 13: Surface search (parse AND document) 
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With the flexible of DMRS query language, we can perform more complex query, such as looking for “results 

from a university”. First, we define the query as “(from / result) AND (from / ?) AND (G:compound_name_rel 

/ ?) AND (G:compound_name_rel / university)”. This means search for sentences contain the lemma “result” 

which links to a lemma “from”. The lemma “from” will link to another node which links to a compound name 

relation. That compound name relation links to a lemma “university”. 

 

Figure 14: Find "result from a university" 

 

 Screenshots 4.5

 

Figure 15: DMRS comparison feature 
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Figure 16: Corpus display 

 

Figure 17: DMRS visualisation 

 

Figure 18: Document view 

 

Figure 19: DMRS Query Language 
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5 Source code 
The source code of this project has been released under General Public License version 3.0. We believe 

that releasing the source code to the public is the best way to contribute to our community. The source code 

can be obtained by two ways: 

 Download compressed package from: 

https://code.google.com/p/visual-kopasu/downloads/list 

 Use Git version control tool to clone the repository by the following command: 

git clone https://code.google.com/p/visual-kopasu/ 

6  Further Research 

 WordNet & DMRS Integration 6.1
At the time we write this report, WordNet integration specification in DMRS specification is almost 

finalised. In fact, we have received the test data and the XML DTD specification to implement this feature in 

our project. However due to the limitation of time, we have postponed this development into the next phase 

of our project.  

 Full implementation of DMRS Query Language 6.2
DMRSQL proposed in our system is only a proof of concept and lacks of many important features. In this 

prototype, DMRSQL can only search for node pattern, single-link pattern and Boolean AND operator. In the 

next step we’ll implement other Boolean operators (OR, NOT) together with links chaining to deliver richer 

search patterns. 

 Better graph search algorithm 6.3
DMRS searching on a corpus as big as our ACL corpus is performing millions of small & disconnected 

graph search tasks. To make this solution becomes more scalable, we should implement better graph search 

algorithm. A good research direction is small graph search tasks require more of I/O speed and parallel 

processing capability rather than the power of a single processing core. We have attempted to enhance the 

current search clusters with parallel processing into distributed architecture but there’re still a lot of works to 

be done. One of them is setting up a grid computing farm to plug our search clusters in. This can be a future 

research. 

 Consideration of using other database technologies 6.4
Recently there are a lot of developments in computer science technologies of how to handle complex and 

big data. Since our DMRS representation is graph in nature, using graph database engine (Neo4J) instead of 

relational database engine might lead to better performance. Another possibility is to research distributed 

database engine such as Apache HBase to handle our knowledge base. Apache HBase’s goal is “the hosting of 

very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware” (Apache 

HBase n.d.). These two directions are very promising and we’ll investigate them in the next phase of this 

project. 

 

  

https://code.google.com/p/visual-kopasu/downloads/list
https://code.google.com/p/visual-kopasu/
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7 Conclusion 
By implementing this project, we have achieved two important results. First, we contributed to the 

development of computational linguistics with our DMRS visualisation tool, a much easier way to do grammar 

comparison, and a mechanism to store and search a large number of DMRS graphs. Second, we have 

demonstrated that question-answering is practically possible with our DMRS persistent framework and 

DMRSQL.  
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10 Appendix A: Text – MRS – DMRS 

 Sentence text 10.1
“Linux is subversive.” 

 MRS representation 10.2
<mrs> 

<label vid='1'/><var vid='2'/> 

<ep cfrom='0' cto='5'><pred>PROPER_Q_REL</pred> 

    <label vid='3'/> 

    <fvpair><rargname>ARG0</rargname><var vid='5' sort='x'> 

    <extrapair><path>PERS</path><value>3</value></extrapair> 

    <extrapair><path>NUM</path><value>SG</value></extrapair> 

    <extrapair><path>IND</path><value>+</value></extrapair></var></fvpair> 

    <fvpair><rargname>RSTR</rargname><var vid='4' sort='h'></var></fvpair> 

    <fvpair><rargname>BODY</rargname><var vid='6' sort='h'></var></fvpair> 

</ep> 

<ep cfrom='0' cto='5'><pred>NAMED_REL</pred><label vid='7'/> 

    <fvpair><rargname>ARG0</rargname><var vid='5' sort='x'> 

    <extrapair><path>PERS</path><value>3</value></extrapair> 

    <extrapair><path>NUM</path><value>SG</value></extrapair> 

    <extrapair><path>IND</path><value>+</value></extrapair></var></fvpair> 

    <fvpair><rargname>CARG</rargname><constant>Linux</constant></fvpair> 

</ep> 

<ep cfrom='9' cto='20'><spred>_subversive_a_1_rel</spred><label vid='8'/> 

    <fvpair><rargname>ARG0</rargname><var vid='2' sort='e'> 

    <extrapair><path>SF</path><value>PROP</value></extrapair> 

    <extrapair><path>TENSE</path><value>PRES</value></extrapair> 

    <extrapair><path>MOOD</path><value>INDICATIVE</value></extrapair> 

    <extrapair><path>PROG</path><value>-</value></extrapair> 

    <extrapair><path>PERF</path><value>-</value></extrapair></var></fvpair> 

    <fvpair><rargname>ARG1</rargname><var vid='5' sort='x'> 

    <extrapair><path>PERS</path><value>3</value></extrapair> 

    <extrapair><path>NUM</path><value>SG</value></extrapair> 

    <extrapair><path>IND</path><value>+</value></extrapair></var></fvpair> 

</ep> 

<hcons hreln='qeq'><hi><var vid='4' sort='h'></var></hi><lo><var vid='7' 

sort='h'></var></lo></hcons> 

</mrs> 

 DMRS representation 10.3
<dmrs cfrom='-1' cto='-1'> 

<node nodeid='10001' cfrom='0' 

cto='5'><gpred>proper_q_rel</gpred><sortinfo/></node> 

<node nodeid='10002' cfrom='0' cto='5' 

carg='Linux'><gpred>named_rel</gpred><sortinfo cvarsort='x' pers='3' num='sg' 

ind='plus'/></node> 

<node nodeid='10003' cfrom='9' cto='20'><realpred lemma='subversive' pos='a' 

sense='1'/><sortinfo cvarsort='e' sf='prop' tense='pres' mood='indicative' 

prog='minus' perf='minus'/></node> 

 

<link from='10001' to='10002'><rargname>RSTR</rargname><post>H</post></link> 

<link from='10003' to='10002'><rargname>ARG1</rargname><post>NEQ</post></link> 

</dmrs> 


