HG2002: Solution to Tutorial 10 Formal Semantics

Francis Bond bond@ieee.org

1. Are the following quantifiers (i) symmetrical or asymmetrical; (ii) upward or downward entailing in the left (iib) or right (iic) argument?
(1) most
i Most students are youths \notin Most youths are students so asymmetrical *There are most students over there
iib Most students are youths $\not \vDash$ Most people are youths
(Upward, left) Most students are youths $\not \vDash$ Most linguistic students are youths
(Downward, left)
iic Most students study formal semantics \notin Most students study semantics (Upward, right) Most students study semantics $\vDash=$ Most students study formal semantics (Downward, right)
Neither upward or downward entailing on the left or right
(2) many (cardinal) "a large number"
i Many students are youths \models Many youths are students so symmetrical There are many students over there
iib Many students are youths \models Many people are youths Many students are youths $\not \vDash$ Many linguistic students are youths
iic Many students study formal semantics \models Many students study semantics Many students study semantics $\not \vDash$ Many students study formal semantics
Upward entailing on the left and right
(3) few (cardinal) "a small number" (in comparison with another number stated or implied)
i Few students are youths $\mid=$ Few youths are students so asymmetrical There are few students over there
iib Few students are youths $\not \vDash$ Few people are youths Few students are youths \notin Few linguistic students are youths
iic Few students study semantics \models Few students study formal semantics Few students study formal semantics $\not \vDash$ Few students study semantics
Downward entailing on the right
(4) every
i Every student is a youth $\not \vDash$ Every youth is student so asymmetrical *There is every student over there
iib Every student is a youth $\vDash=$ Every person is a youth Every student is a youth $\mid=$ Every linguistic student is a youth
iic Every student studies formal semantics \models Every student studies semantics Every student studies semantics $\vDash \in$ Every student studies formal semantics
Downward entailing on the left; Upward on the right
(5) [at least] two
i At least two students are youths \models At least two youths are students so symmetrical There are at least two students over there
iib At least two students are youths \models At least two people are youths At least two students are youths \notin At least two linguistic students are youths
iic At least two students study semantics $\not \vDash$ At least two students study formal semantics At least two students study formal semantics \models At least two students study semantics

Upward entailing on the left and right
（6）［exactly］two（no more or less）
i Exactly two students are youths \models Exactly two youths are students so symmetrical There are exactly two students over there
iib Exactly two students are youths \notin Exactly two people are youths Exactly two students are youths \neq Exactly two linguistic students are youths
iic Exactly two students study formal semantics $\notin=$ Exactly two students study semantics Exactly two students study semantics \neq Exactly two students study formal semantics
Neither upward or downward entailing on the left or right
2．Using the formulae of meaning postulates，represent the semantic relations between the following word pairs：
Also give the Theta－grid for the predicates．
（7）couch／sofa
－$\forall x((\operatorname{COUCH}(\mathrm{x}) \rightarrow \operatorname{SOFA}(\mathrm{x})) \wedge \forall \mathrm{x}((\operatorname{SOFA}(\mathrm{x}) \rightarrow \operatorname{COUCH}(\mathrm{x}))$
（8）accepted／rejected
－$\forall x(\operatorname{ACCEPTED}(x) \rightarrow \neg \operatorname{REJECTED}(x))$ ；
$+\quad \forall x(\operatorname{REJECTED}(\mathrm{x}) \rightarrow \neg \operatorname{ACCEPTED}(\mathrm{x}))$
X be accepted \langle THEME \rangle
X be rejected 〈THEME〉
（9）student／person
－$\forall x((\operatorname{STUDENT}(\mathrm{x}) \rightarrow \operatorname{PERSON}(\mathrm{x}))$
（10）on／off（of a switch）
－$\forall x(\mathrm{ON}(\mathrm{x}) \rightarrow \neg \mathrm{ON}(\mathrm{x}))$ ；
$+\forall x(\mathrm{OFF}(\mathrm{x}) \rightarrow \neg \mathrm{OFF}(\mathrm{x}))$
\boldsymbol{X} be on \langle theme \rangle
X be off $\langle\underline{\text { THEME }\rangle}$
（11）buy／sell
－$\forall x \forall y(\operatorname{BUY}(x, z, y) \rightarrow \operatorname{SELL}(y, z, x))$ ； $\forall x \forall y(\operatorname{BUY}(x, z, y) \rightarrow \neg \operatorname{SELL}(x, z, y))$
－$\forall x \forall y(\operatorname{SELL}(y, z, x) \rightarrow \operatorname{BUY}(x, z, y))$ $\forall x \forall y(\operatorname{SELL}(y, z, x) \rightarrow \neg \operatorname{BUY}(y, z, x))$
X buy Z from Y 〈agent，theme，source \rangle
X sell Z to Y 〈AGENT，THEME，GOAL〉
（12）computer／laptop
－$\forall x((\operatorname{LAPTOP}(\mathrm{x}) \rightarrow \operatorname{COMPUTER}(\mathrm{x}))$
（13）give／receive
－$\forall x \forall y(\operatorname{GIVE}(x, z, y) \rightarrow \operatorname{RECEIVE}(y, z, x))$ ； $\forall x \forall y(\operatorname{GIVE}(x, z, y) \rightarrow \neg \operatorname{RECEIVE}(x, z, y))$
－$\forall x \forall y(\operatorname{RECEIVE}(y, z, x) \rightarrow \operatorname{GIVE}(x, z, y))$ $\forall x \forall y(\operatorname{RECEIVE}(y, z, x) \rightarrow \neg \operatorname{GIVE}(y, z, x))$
X give Z to Y 〈agent，theme，goal \rangle
X receive Z from \boldsymbol{Y} 〈AGENT，THEME，SOURCE \rangle
（14）Monday／Tuesday／Wednesday／Thursday／Friday
－$\quad \forall x(\operatorname{MONDAY}(\mathrm{x}) \rightarrow(\neg \operatorname{TUESDAY}(\mathrm{x}) \vee \neg \operatorname{WEDNESDAY}(\mathrm{x}) \vee \neg \operatorname{THURSDAY}(\mathrm{x}) \vee \neg \operatorname{FRIDAY}(\mathrm{x}))$ ；
$+\quad \forall x(\operatorname{TUESDAY}(\mathrm{x}) \rightarrow(\neg \operatorname{MONDAY}(\mathrm{x}) \vee \neg \operatorname{WEDNESDAY}(\mathrm{x}) \vee \neg \operatorname{THURSDAY}(\mathrm{x}) \vee \neg \operatorname{FRIDAY}(\mathrm{x}))$ ；
$+\quad .$.
3. Using set notation, define few (A,B) (cardinal) and few_of(A,B) (proportional).

- few $(\mathrm{A}, \mathrm{B})=1$ iff $|\mathrm{A} \cap \mathrm{B}|<n$
where n is a contextually defined number that denotes a small number without relating it to the size of A or B .
- few_of $(\mathrm{A}, \mathrm{B})=1$ iff $|\mathrm{A} \cap \mathrm{B}|<|A| / n$
n is a contextually defined number >1 that denotes the proportion in relation to A's size.

Acknowledgments These questions are partially based on exercises from Saeed (2003).

