HG2002 Semantics and Pragmatics

Formal Semantics

Francis Bond

Division of Linguistics and Multilingual Studies

http://www3.ntu.edu.sg/home/fcbond/

bond@ieee.org

Lecture 10

https://bond-lab.github.io/Semantics-and-Pragmatics/

Creative Commons Attribution License: you are free to share and adapt as long as you give appropriate credit and add no additional restrictions:

https://creativecommons.org/licenses/by/4.0/.

HG2002 (2021)

Overview

- Revision: Components
- Quantifiers and Higher Order Logic
- ➤ Modality
- > (Dynamic Approaches to Discourse)
- > Next Lecture: Chapter 11 Cognitive Semantics

Revision: Componential Analysis

Break word meaning into its components

- components allow a compact description
- interact with morphology/syntax
- > form part of our cognitive architecture
- ➤ For example:

woman	[FEMALE]	[ADULT]	[HUMAN]	
spinster	[FEMALE]	[ADULT]	[HUMAN]	[UNMARRIED]
bachelor	[MALE]	[ADULT]	[HUMAN]	[UNMARRIED]
wife	[FEMALE]	[ADULT]	[HUMAN]	[MARRIED]

> We can make things more economical (fewer components):

woman	[+FEMALE]	[+ADULT]	[+HUMAN]	
spinster	[+FEMALE]	[+ADULT]	[+HUMAN]	[-MARRIED]
bachelor	[-FEMALE]	[+ADULT]	[+HUMAN]	[-married]
wife	[+FEMALE]	[+ADULT]	[+HUMAN]	[+MARRIED]

Defining Relations using Components

- hyponymy: P is a hyponym of Q if all the components of Q are also in P. spinster
 woman; wife
 woman
- incompatibility: P is incompatible with Q if they share some components but differ in one or more contrasting components spinster \apprix wife
- Redundancy Rules

➤ Predicates with argument structure parent (of y)(x,y) →[+PARENT](x,y)

Katz's Semantic Theory

- > Semantic rules must be recursive to deal with infinite meaning
- Semantic rules interact with syntactic rule to build up meaning compositionally
 - A dictionary pairs lexical items with semantic representations
 - * (semantic markers) are the links that bind lexical items together in lexical relations
 - * [distinguishers] serve to identify this particular lexical item

this information is not relevant to syntax

- projection rules show how meaning is built up
 - * Information is passed up the tree and collected at the top.
 - * Selectional restrictions help to reduce ambiguity and limit the possible readings

Verb Classification

- We can investigate the meaning of a verb by looking at its grammatical behavior
 - (1) Consider the following transitive verbs
 - a. Margaret cut the bread
 - b. Janet broke the vase
 - c. Terry touched the cat
 - d. Carla hit the door

> These do not all allow the same argument structure alternations

Diathesis Alternations

 ➤ Causative/inchoative alternation: *Kim broke the window ↔ The window broke* also *the window is broken* (state)

 ➤ Middle construction alternation: *Kim cut the bread ↔ The bread cut easily*
 ➤ Conative alternation: *Kim hit the door ↔ Kim hit at the door*
 ➤ Body-part possessor ascension alternation: *Kim cut Sandy's arm ↔ Kim* cut Sandy on the arm

Diathesis Alternations and Verb Classes

A verb's (in)compatibility with different alternations is a strong predictor of its lexical semantics:

		breal	k cut	hit	touch	
	Causati	ve YES	NO	NO	NO	
	Middle	YES	YES	NO	NO	
	Conativ	e NO	YES	YES	NO	
	Body-pa	art NO	YES	YES	YES	
	break = {	break, ch	ip, crac	k, cras	h, crush,	}
	cut = {chip, clip, cut, hack, hew, saw,}					
	hit = {ban	g, bash, l	batter, k	beat, b	ump,}	
	<i>touch</i> = {	caress, g	raze, kis	ss, lick	, nudge,	}
\succ	break	CAUSE, C	HANGE			
	cut	CAUSE, C	HANGE,	CONTA	CT, MOTI	ON
	hit	CONTACT		N		
	touch	CONTACT				

Cognitive Semantics

- > Major semantic components of Motion:
 - * Figure: object moving or located with respect to the ground
 - * Ground: reference object
 - * Motion: the presence of movement of location in the event
 - * **Path**: the course followed or site occupied by the Figure
 - * Manner: the type of motion

(2)	Kim	swam	away from	m the cro	ocodile
	Figure	e Manner	Path	Groun	ld

(3) *The banana hung from the tree* Figure Manner Path Ground

These are lexicalized differently in different languages.
Language (Family)
Verb Conflation Pattern

Eangaage (Fanny)	
Romance, Semitic, Polynesian,	Path + fact-of-Motion
Indo-European (- Romance), Chinese	Manner/Cause + fact-of-Motion
Navajo, Atsuwegei,	Figure + fact-of-Motion

Jackendoff's Lexical Conceptual Structure

> An attempt to explain how we think

Mentalist Postulate

Meaning in natural language is an information structure that is mentally encoded by human beings

- Universal Semantic Categories
 - * Event
 - * State
 - * Material Thing/Object
 - * Path
 - * Place
 - * Property

Motion as a tree

Things: Boundedness and Internal Structure

> Two components:

Boundedness	Internal Struct.	Туре	Example
+b	—i	individuals	a dog/two dogs
+b	+i	groups	a committee
-b	—i	substances	water
-b	+i	aggregates	buses, cattle

This can be extended to verb aspect (the verb event is also [±b, ±i]).

sleep [-b], cough [+b], eat [±b]

- (10) Bill ate two hot dogs in two hours.
- (11) *Bill ate hot dogs in two hours.
- (12) [#]Bill ate two hot dogs for two hours.
- (13) Bill ate hot dogs for two hours.

Conversion: Boundedness and Internal Structure

> Including

plural composed of containing ➤ Excluding	$\begin{array}{l} [+b,-i] \rightarrow [-b,+i] \\ [-b,+i] \rightarrow [+b,-i] \\ [-b,-i] \rightarrow [+b,-i] \end{array}$	brick \rightarrow bricks bricks \rightarrow house of bricks coffee \rightarrow a cup of coffee/a coffee
element partitive	$[-b,+i] ightarrow [+b,-i]$ $[-b,\pm i] ightarrow [+b,-i]$	i] grain of rice –i] top of the mountain, one of the

Э **universal grinder** $[+b, -i] \rightarrow [-b, -i]$ There's dog all over the road

Pustejovsky's Generative Lexicon

\succ	Each lexical entr	y can have:			
	ARGUMENT STRU	CTURE			
	EVENT STRUCTUF	RE			
	LEXICAL INHERITA	ANCE STRUCT	URE		
	QUALIA STRUCTU CONSTITUTIVE	RE: constituent	parts		
	FORMAL	relation to o	other things		
	TELIC	purpose			
	AGENTIVE how it is made				
\succ	Interpretation is generated by combing word meanings				
	Events have complex structure				
	State	•	Process	Transition	
	S P T				
	e	9	$e_1 \dots e_n$	$\mathbf{E}_1 \neg \mathbf{E}_2$	
	understand, lo	ove, be tall	sing, walk, swim	open, close, build	

Modifier Ambiguity

(17) fast typist

- a. a typist who is fast [at running]
- b. a typist who types fast

- > (17a) *fast* modifies x
- ➤ (17b) fast modifies e

Summary

- Meaning can be broken up into units smaller than words: components
 - \succ These can be combined to make larger meanings
 - > At least some of them influence syntax
 - > They may be psychologically real
- Problems with Components of Meaning
 - Primitives are no different from necessary and sufficient conditions
 - it is impossible to agree on the definitions
 - but they allow us to state generalizations better
 - > Psycho-linguistic evidence is weak
 - It is just markerese
 - There is no grounding

Word Meaning: Meaning Postulates

> hyponymy

 $\succ \forall x(DOG(x) \rightarrow ANIMAL(x))$

≻ synonym

- > $\forall x((EGGPLANT(x) \rightarrow BRINJAL(x)) \land (BRINJAL(x) \rightarrow EGG-PLANT(x)))$
- > $\forall x (EGGPLANT(x) \equiv BRINJAL(x))$

➤ antonym

→
$$\forall x(DEAD(x) \rightarrow \neg ALIVE(x));$$
+ $\forall x(ALIVE(x) \rightarrow \neg DEAD(x))$

➤ converse

- > $\forall x \forall y (PARENT(x,y) \rightarrow CHILD(y,x));$ $\forall x \forall y (PARENT(x,y) \rightarrow \neg CHILD(x,y))$
- $\begin{array}{l} \succ & \forall x \forall y (CHILD(y,x) \rightarrow \mathsf{PARENT}(x,y)) \\ & \forall x \forall y (CHILD(y,x) \rightarrow \neg \mathsf{PARENT}(y,x)) \end{array}$

Semantic Relations as Sets ($p \subset q$ and $p \sim q$)

Logical Connectives as Sets (p and $\neg p$)

Logical Connectives as Sets ($p \land q$ and $p \lor q$)

Logical Connectives as Sets ($p \oplus q$ and $p \to q$)

Natural Language Quantifiers and Higher Order Logic

- Most students read a book
 - Most(x)(S(x) ∧ R(x)) most things are students and most things read books
 Most(x)(S(x) → R(x)) most things are such that, if they are students, they read books

but also true for all things that are not students!

> We need to restrict the quantification

> (Most x: S(x)) R(x)

- Sometimes we need to decompose
 - *> everybody* (∀x: P(x))
 > something (∃x: T(x))

Higher Order Logic

- First-order logic over individuals
- Second-order logic also quantifies over sets
- > Third-order logic also quantifies over sets of sets
- > Fourth-order logic also quantifies over sets of sets of sets

. . .

➤ Recall Ian sings

 > [S(i)]^{M₁} = 1 iff [i]^{M₁} ∈ [S]^{M₁} The sentence is true if and only if the extension of *lan* is part of the set defined by *sings* in the model M₁
 > Remodel, with sing a property of lan: i(S) [i(S)]^{M₁} = 1 iff [S]^{M₁} ∈ [i]^{M₁} The sentence is true if and only if the denotation of the verb phrase *sings* is part of the extension of *lan* in the model M₁

Ian is a set of sets of properties: second-order logic

Generalized Quantifiers

- ➤ Q(A,B): Q A are B
- \succ most(A,B) = 1 iff $|A \cap B| > |A B|$
- > all(A,B) = 1 iff $A \subseteq B$
- > some(A,B) = 1 iff $A \cap B \neq \emptyset$
- \succ no(A,B) = 1 iff A \cap B = Ø
- > fewer than x(A,B,X) = 1 iff $|A \cap B| < |X|$

Generalized Quantifiers: all, most

Generalized Quantifiers: some, no

Strong/Weak Quantifiers

- (18) only **weak** quantifiers can occur in existential *there* sentences
 - a. There is a fox in the henhouse
 - b. There are two foxes in the henhouse
 - c. *There is every fox in the henhouse
 - d. *There are both foxes in the henhouse
- symmetrical (cardinal) quantifiers are weak det(A,B) = det(B,A)
 - (19) *3 lecturers are Australian = 3 Australians are lecturers*
- asymmetrical (proportional) quantifiers are <u>strong</u> det(A,B) \neq det(B,A)
 - (20) most lecturers are Australian ≠ most Australians are lecturers

Q: Come up with some more strong and weak quantifiers

Negative Polarity Items (NPI)

- Some words in English mainly appear in negative environments
 - (21) a. *Kim does<u>n't ever eat dessert</u>*
 - b. *Kim does ever eat dessert
 - (22) a. *Kim has<u>n't</u> eaten dessert yet*
 - b. *Kim has eaten dessert yet
 - (23) a. Few people have eaten dessert yet
 - b. *Many people have eaten dessert yet
 - (24) a. Rarely does Kim ever eat dessert
 - b. *Often does Kim ever eat dessert
- Not just negation, but also some quantifiers

Monotonicity

- Some quantifiers control entailment between sets and subsets
 - Upward entailment goes from a subset to a set
 - Downward entailment goes from a set to a subset
 - (25) a. Kim doesn't eat dessert \Rightarrow Kim doesn't eat hot dessert
 - b. Kim does<u>n't</u> eat hot dessert \Rightarrow Kim does<u>n't</u> eat dessert Downward entailment
 - (26) a. Kim eats some desserts \Rightarrow Kim eats hot desserts
 - b. Kim eats some hot desserts ⇒ Kim eats some desserts

Upward entailment

Negative Polarity Items are licensed by downward entailing expressions

- > The monotonicity may depend on the position
 - (27) a. Every student studies semantics *⇒* Every student studies formal semantics
 - b. Every student studies formal semantics ⇒ Every student studies semantics

Upward entailment (right argument)

- (28) a. Every student studies semantics \Rightarrow Every linguistics student studies semantics
 - b. Every linguistic student studies semantics ⇒ Every student studies semantics

Downward entailment (left argument)

- (29) a. Every student who has ever studied semantics loves it
 - b. *Every student who has studied semantics ever loves it
 - c. Few students who have ever studied semantics dislike it
 - d. Few students who have studied semantics ever dislike it
- Formal models of quantification can be used to make predictions about seemingly unrelated phenomena

In other languages too!

(30) 我沒有 任何 朋友 wǒ méi-yǒu rènhé péngyǒu I NEG-have any friend "I don't have any friends."
(31) *我有任何朋友 wǒ yǒu rènhé péngyǒu I have any friend *"I have any friends."

Modality

Modality as a scale of Implicatures

- (32) *I know that p*
- (33) I am absolutely certain that p
- (34) I am almost certain that p
- (35) I believe that p
- (36) I am pretty certain that p
- (37) Possibly p

. . .

. . .

- (38) It is very unlikely that p
- (39) It is almost impossible that p
- (40) It is impossible that p
- (41) It is not the case that p
- (42) I am absolutely certain that not-p

Modal Logics

> Add two modal operators for epistemic modality

- $\blacktriangleright \phi = it is possible that \phi$
- $\succ \Box \phi = it is necessary that \phi$
- Define them in terms of possible worlds
 - $\succ \diamond \phi$: true in at least one world
 - $\succ \Box \phi$: true in all worlds
- > $M = \{W, U, F\}$: the model now has three parts
 - \boldsymbol{W} set of possible worlds
 - $U\,$ domain of individuals (universe)
 - ${\cal F}\,$ denotation assignment function

> Add two modal operators for deontic modality

- \blacktriangleright $\mathbf{P}\phi = it is permitted that \phi$
- \succ O ϕ = it is obligatorily ϕ
- Define them in terms of possible worlds
 - > $P\phi$: true in at least one legal or morally ideal world
 - > $O\phi$: true in all legal or morally ideal worlds

Dynamic Approaches to Discourse

Anaphora

- (43) a. $R2D2_i$ mistrusts itself_i
 - b. M(r,r)
- (44) a. Every robot mistrusts itself
 - b. (∀x: R(x)) M(x,x)
- (45) a. Luke bought a robot and it doesn't work
 - b. $(\exists x: R(x)) B(I,x) \land \neg W(x)$
- (46) a. Every robot went to Naboo. ?It met Jar Jar.
 - b. (∀x: R(x)) W(x,n); M(x,j)
- (47) a. A robot went to Naboo. It met Jar Jar.
 - b. $(\exists x: R(x)) W(x,n); M(x,j)$??? indefinite nominals exist beyond the sentence: **discourse**

referents

(48) a. *Luke didn't buy a robot. ?It met Jar Jar.* indefinite nominals scope can still be limited

unbound

- (49) a. If $R2D2_i$ owns a ship it is rich
 - b. $(\exists x \ (S(x) \land O(r,x))) \rightarrow R(x)$
- (50) a. If a robot owns a ship it races it
 - b. *($\exists x \exists y \ (R(x) \land S(y) \land O(x,y))) \rightarrow R(x,y)$
 - c. $\forall x \forall y ((R(x) \land S(y) \land O(x,y)) \rightarrow R(x,y)$

 \exists needs to become \forall

(51) Every farmer who owns a donkey beats it

Discourse Representation Theory

- Build up Discourse Representation Structures
 - (52) a. Alex met a robot_i
 - b. It_i smiled

$$x y u$$

Alex(x)
robot(y)
met (x,y)
 $u = y$
smiled(u)

Negative Contexts

- The contained DRS is subordinate
 - indefinite NPs in negated subordinate structures are inaccessible
 - > names (constants) are always accessible

Conditionals

- The contained DRS is subordinate
 - indefinite NPs in the antecedent are accessible in the consequent

More Conditionals

- The contained DRS is subordinate
 - indefinite NPs in the antecedent are accessible in the consequent

More Conditionals

- The contained DRS is subordinate
 - indefinite NPs in the antecedent are accessible in the consequent

More Conditionals

- The contained DRS is subordinate
 - Universal Quantifiers copy the variable across the conditional

Discourse Representation Theory

- > Explains how reference occurs across clauses and sentences
 - > Distinguishes between names and indefinite NPS
 - Distinguishes between positive assertions, negative sentences, conditional sentences, universally quantified sentences
 - Is useful for modeling the incremental update of knowledge in a conversation

Acknowledgments and References

Video Regency Disco from that Mitchel and Webb Look Episode 3.3, which was first broadcast on Thursday 25th June 2009.