HG2002 Semantics and Pragmatics

Formal Semantics

Francis Bond
Division of Linguistics and Multilingual Studies
http://www3.ntu.edu.sg/home/fcbond/
bond@ieee.org
Lecture 10
https://bond-lab.github.io/Semantics-and-Pragmatics/
Creative Commons Attribution License: you are free to share and adapt as long as you give appropriate credit and add no additional restrictions:
https://creativecommons.org/licenses/by/4.0/.

Overview

$>$ Revision: Components
> Quantifiers and Higher Order Logic
$>$ Modality
$>$ (Dynamic Approaches to Discourse)
> Next Lecture: Chapter 11 - Cognitive Semantics

Revision: Componential Analysis

Break word meaning into its components

$>$ components allow a compact description
$>$ interact with morphology/syntax
$>$ form part of our cognitive architecture
> For example:

woman	[FEMALE]	[ADULT]	[HUMAN]	
spinster	[FEMALE]	[ADULT]	[HUMAN]	[UNMARRIED]
bachelor	[MALE]	[ADULT]	[HUMAN]	[UNMARRIED]
wife	[FEMALE]	[ADULT]	[HUMAN]	[MARRIED]

$>$ We can make things more economical (fewer components):

woman	[+FEMALE]	[+ADULT]	[+HUMAN]	
spinster	[+FEMALE]	[+ADULT]	[+HUMAN]	[-MARRIED]
bachelor	[-FEMALE]	[+ADULT]	[+HUMAN]	[-MARRIED]
wife	[+FEMALE]	[+ADULT]	[+HUMAN]	[+MARRIED]

Defining Relations using Components

$>$ hyponymy: P is a hyponym of Q if all the components of Q are also in P.
spinster \subset woman; wife \subset woman
$>$ incompatibility: P is incompatible with Q if they share some components but differ in one or more contrasting components spinster $\not \approx$ wife
> Redundancy Rules

$$
\begin{array}{lll}
{[+ \text { HUMAN }]} & \rightarrow & {[+ \text { ANIMATE }]} \\
{[+ \text { ANIMATE }]} & \rightarrow & {[+ \text { CONCRETE }]} \\
{[+M A R R I E D]} & \rightarrow & {[+ \text { ADULT }]} \\
{[+ \text { MARRIED }]} & \rightarrow & {[+ \text { HUMAN }]}
\end{array}
$$

$>$ Predicates with argument structure parent $($ of $y)(\underline{x}, y) \rightarrow[+$ PARENT $](\underline{x}, y)$

Katz's Semantic Theory

$>$ Semantic rules must be recursive to deal with infinite meaning
$>$ Semantic rules interact with syntactic rule to build up meaning compositionally
$>$ A dictionary pairs lexical items with semantic representations

* (semantic markers) are the links that bind lexical items together in lexical relations
* [distinguishers] serve to identify this particular lexical item
this information is not relevant to syntax
$>$ projection rules show how meaning is built up
* Information is passed up the tree and collected at the top.
* Selectional restrictions help to reduce ambiguity and limit the possible readings

Verb Classification

$>$ We can investigate the meaning of a verb by looking at its grammatical behavior
(1) Consider the following transitive verbs
a. Margaret cut the bread
b. Janet broke the vase
c. Terry touched the cat
d. Carla hit the door
$>$ These do not all allow the same argument structure alternations

Diathesis Alternations

$>$ Causative/inchoative alternation:
Kim broke the window \leftrightarrow The window broke also the window is broken (state)
$>$ Middle construction alternation:
Kim cut the bread \leftrightarrow The bread cut easily
$>$ Conative alternation:
Kim hit the door \leftrightarrow Kim hit at the door
$>$ Body-part possessor ascension alternation:
Kim cut Sandy's arm \leftrightarrow Kim cut Sandy on the arm

Diathesis Alternations and Verb Classes

$>$ A verb's (in)compatibility with different alternations is a strong predictor of its lexical semantics:

	break	cut	hit	touch
Causative	YES	NO	NO	NO
Middle	YES	YES	NO	NO
Conative	NO	YES	YES	NO
Body-part	NO	YES YES	YES	
break $=\{$ break, chip, crack, crash, crush, ... $\}$				
cut $=\{$ chip, clip, cut, hack, hew, saw, ... $\}$				
hit $=\{$ bang, bash, batter, beat, bump, ... $\}$				
touch $=\{$ caress, graze, kiss, lick, nudge, ... $\}$				
break	CAUSE, CHANGE			
cut	CAUSE, CHANGE, CONTACT, MOTION			
hit	CONTACT, MOTION			
touch	CONTACT			

Cognitive Semantics

$>$ Major semantic components of Motion:

* Figure: object moving or located with respect to the ground
* Ground: reference object
* Motion: the presence of movement of location in the event
* Path: the course followed or site occupied by the Figure
* Manner: the type of motion
(2) Kim swam away from the crocodile Figure Manner Path Ground
(3) The banana hung from the tree Figure Manner Path Ground
$>$ These are lexicalized differently in different languages.
Language (Family) Verb Conflation Pattern

Romance, Semitic, Polynesian, ... Path + fact-of-Motion
Indo-European (- Romance), Chinese Manner/Cause + fact-of-Motion
Navajo, Atsuwegei, ...
Figure + fact-of-Motion

Jackendoff's Lexical Conceptual Structure

$>$ An attempt to explain how we think
$>$ Mentalist Postulate
Meaning in natural language is an information structure that is mentally encoded by human beings
$>$ Universal Semantic Categories

* Event
* State
* Material Thing/Object
* Path
* Place
* Property

Motion as a tree

(4) Bobby went into the house
(5) "Bobby traverses a path that terminates at the interior of the house"
(6)

Event			
GO	Thing	Path	
	BOBBY	TO	Place
			N Thing

Things: Boundedness and Internal Structure

$>$ Two components:

Boundedness	Internal Struct.	Type	Example
+b	-i	individuals	a dog/two dogs
+b	+i	groups	a committee
-b	-i	substances	water
-b	+i	aggregates	buses, cattle

$>$ This can be extended to verb aspect (the verb event is also [$\pm \mathrm{b}$, $\pm i]$).
sleep [-b], cough [+b], eat [$\pm \mathrm{b}$]
(10) Bill ate two hot dogs in two hours.
(11) *Bill ate hot dogs in two hours.
(12) \#Bill ate two hot dogs for two hours.
(13) Bill ate hot dogs for two hours.

Conversion: Boundedness and Internal Structure

> Including
composed of containing
plural $\quad[+\mathrm{b},-\mathrm{i}] \rightarrow[-\mathrm{b},+\mathrm{i}] \quad$ brick \rightarrow bricks
$[-\mathrm{b},+\mathrm{i}] \rightarrow[+\mathrm{b},-\mathrm{i}] \quad$ bricks \rightarrow house of bricks
$[-\mathrm{b},-\mathrm{i}] \rightarrow[+\mathrm{b},-\mathrm{i}] \quad$ coffee \rightarrow a cup of coffee/a coffee
$>$ Excluding
element partitive
universal grinder
$[-\mathrm{b},+\mathrm{i}] \rightarrow[+\mathrm{b},-\mathrm{i}] \quad$ grain of rice
$[-\mathrm{b}, \pm \mathrm{i}] \rightarrow[+\mathrm{b},-\mathrm{i}] \quad$ top of the mountain, one of the $[+\mathrm{b},-\mathrm{i}] \rightarrow[-\mathrm{b},-\mathrm{i}] \quad$ There's dog all over the road

Pustejovsky’s Generative Lexicon

$>$ Each lexical entry can have:
ARGUMENT STRUCTURE
EVENT STRUCTURE
LEXICAL INHERITANCE STRUCTURE
QUALIA STRUCTURE:
CONSTITUTIVE constituent parts
FORMAL relation to other things

TELIC purpose
agentive how it is made
$>$ Interpretation is generated by combing word meanings
$>$ Events have complex structure

State	Process	Transition
S	P	T
e	$\mathrm{E}_{1} \ldots \mathrm{e}_{n}$	E_{2}
understand, love, be tall	sing, walk, swim	open, close, build

Modifier Ambiguity
(14) Jamie closed the door rudely
(15) Jamie closed the door in a rude way [with his foot]

$\mathrm{P}[$ rude(P)]	S
$[$ act(j, door) $\wedge \neg$ closed(door) $]$	$[$ closed(door) $]$

(16) It was rude of Jamie to close the door

	T [rude(T)]	
	P	S
[act(j, door) \wedge	$\wedge \neg$ closed(door)]	[closed(door)]

Qualia Structure

(17) fast typist
a. a typist who is fast [at running]
b. a typist who types fast
$>$ typist $\left.\left[\begin{array}{lll}\text { ARGSTR } & {[\text { ARG1 }} & x: \text { typist }] \\ \text { QUALIA } & {\left[\begin{array}{ll}\text { FORMAL } & {[x[\subset \text { person }]}\end{array}\right]} \\ \text { TELIC } & {[\text { type }(e, x)]}\end{array}\right]\right]$
$>$ (17a) fast modifies x
$>$ (17b) fast modifies e

Summary

> Meaning can be broken up into units smaller than words: components
$>$ These can be combined to make larger meanings
$>$ At least some of them influence syntax
$>$ They may be psychologically real
> Problems with Components of Meaning
$>$ Primitives are no different from necessary and sufficient conditions
it is impossible to agree on the definitions
but they allow us to state generalizations better
$>$ Psycho-linguistic evidence is weak
$>$ It is just markerese
$>$ There is no grounding

Word Meaning: Meaning Postulates

Defining Relations using Logic

> hyponymy
$>\forall x(\operatorname{DOG}(x) \rightarrow \operatorname{ANIMAL}(x))$
$>$ synonym
$>\forall x((E G G P L A N T(x) \rightarrow B R I N J A L(x)) \wedge(B R I N J A L(x) \rightarrow E G G-$ PLANT(x)))
$>\forall x(E G G P L A N T(x) \equiv \operatorname{BRINJAL}(x))$
$>$ antonym
$>\forall x(\operatorname{DEAD}(\mathrm{x}) \rightarrow \neg \operatorname{ALIVE}(\mathrm{x})) ;$
$+\forall x(\operatorname{ALIVE}(x) \rightarrow \neg \operatorname{DEAD}(\mathrm{x}))$
> converse
$>\forall \mathrm{x} \forall \mathrm{y}(\operatorname{PARENT}(\mathrm{x}, \mathrm{y}) \rightarrow \operatorname{CHILD}(\mathrm{y}, \mathrm{x}))$; $\forall x \forall y(\operatorname{PARENT}(x, y) \rightarrow \neg \operatorname{CHILD}(x, y))$
$>\forall x \forall y(\operatorname{CHILD}(y, x) \rightarrow \operatorname{PARENT}(x, y))$
$\forall \mathrm{x} \forall \mathrm{y}(\operatorname{CHILD}(\mathrm{y}, \mathrm{x}) \rightarrow \neg \operatorname{PARENT}(\mathrm{y}, \mathrm{x}))$

Semantic Relations as Sets ($p \subset q$ and $p \sim q$)

$p \subset q$ hypernym
$p \sim q$ synonym

Logical Connectives as Sets (p and $\neg p$)
p
$\neg p$ "not"

Logical Connectives as Sets ($p \wedge q$ and $p \vee q$)

$$
p \wedge q \text { "and" }
$$

$$
p \vee q \text { "or" }
$$

Logical Connectives as Sets ($p \oplus q$ and $p \rightarrow q$)

$$
p \oplus q \text { "exclusive or" } \quad p \rightarrow q \text { "if" }
$$

Natural Language Quantifiers
 and Higher Order Logic

Restricted Quantifiers

> Most students read a book
$>\operatorname{Most}(x)(S(x) \wedge R(x))$ most things are students and most things read books
$>\operatorname{Most}(\mathrm{x})(\mathrm{S}(\mathrm{x}) \rightarrow \mathrm{R}(\mathrm{x}))$ most things are such that, if they are students, they read books but also true for all things that are not students!
$>$ We need to restrict the quantification
$>($ Most $\mathrm{x}: \mathrm{S}(\mathrm{x})) \mathrm{R}(\mathrm{x})$
$>$ Sometimes we need to decompose
$>$ everybody $(\forall \mathrm{x}: \mathrm{P}(\mathrm{x}))$
$>$ something $(\exists \mathrm{x}: \mathrm{T}(\mathrm{x}))$

Higher Order Logic

> First-order logic over individuals
$>$ Second-order logic also quantifies over sets
$>$ Third-order logic also quantifies over sets of sets
$>$ Fourth-order logic also quantifies over sets of sets of sets

Higher Order Logic

$>$ Recall lan sings
$>[\mathrm{S}(\mathrm{i})]^{M_{1}}=1 \mathrm{iff}[\mathrm{i}]^{M_{1}} \in[\mathrm{~S}]^{M_{1}}$
The sentence is true if and only if the extension of lan is part of the set defined by sings in the model M_{1}
$>$ Remodel, with sing a property of lan: $\mathrm{i}(\mathrm{S})$
$[\mathrm{i}(\mathrm{S})]^{M_{1}}=1 \mathrm{iff}[\mathrm{S}]^{M_{1}} \in[\mathrm{i}]^{M_{1}}$
The sentence is true if and only if the denotation of the verb phrase sings is part of the extension of lan in the model M_{1}
$>$ Ian is a set of sets of properties: second-order logic

Generalized Quantifiers

$$
\begin{aligned}
& >Q(A, B): Q A \text { are } B \\
& >\operatorname{most}(A, B)=1 \text { iff }|A \cap B|>|A-B| \\
& >\operatorname{all}(A, B)=1 \text { iff } A \subseteq B \\
& >\operatorname{some}(A, B)=1 \text { iff } A \cap B \neq \emptyset \\
& >\operatorname{no}(A, B)=1 \text { iff } A \cap B=\emptyset \\
& >\text { fewer than } x(A, B, X)=1 \text { iff }|A \cap B|<|X|
\end{aligned}
$$

Generalized Quantifiers: all, most
all p are q

Generalized Quantifiers: some, no
some p are q
no p are q

Strong/Weak Quantifiers

(18) only weak quantifiers can occur in existential there sentences
a. There is a fox in the henhouse
b. There are two foxes in the henhouse
c. *There is every fox in the henhouse
d. *There are both foxes in the henhouse
$>$ symmetrical (cardinal) quantifiers are weak $\operatorname{det}(A, B)=\operatorname{det}(B, A)$
(19) 3 lecturers are Australian $=3$ Australians are lecturers
$>$ asymmetrical (proportional) quantifiers are strong $\operatorname{det}(A, B) \neq \operatorname{det}(B, A)$
(20) most lecturers are Australian \neq most Australians are lecturers

Negative Polarity Items (NPI)

$>$ Some words in English mainly appear in negative environments
(21) a. Kim doesn't ever eat dessert
b. *Kim does ever eat dessert
(22) a. Kim hasn't eaten dessert yet
b. *Kim has eaten dessert yet
(23) a. Few people have eaten dessert yet
b. *Many people have eaten dessert yet
(24) a. Rarely does Kim ever eat dessert
b. *Often does Kim ever eat dessert
$>$ Not just negation, but also some quantifiers

Monotonicity

> Some quantifiers control entailment between sets and subsets
$>$ Upward entailment goes from a subset to a set
$>$ Downward entailment goes from a set to a subset
(25) a. Kim doesn't eat dessert \Rightarrow Kim doesn't eat hot dessert
b. Kim doesn't eat hot dessert \nRightarrow Kim doesn't eat dessert

Downward entailment

(26) a. Kim eats some desserts \nRightarrow Kim eats hot desserts
b. Kim eats some hot desserts \Rightarrow Kim eats some desserts

Upward entailment

$>$ Negative Polarity Items are licensed by downward entailing expressions

Left and Right Monotonicity

$>$ The monotonicity may depend on the position
(27) a. Every student studies semantics \nRightarrow Every student studies formal semantics
b. Every student studies formal semantics \Rightarrow Every student studies semantics

Upward entailment (right argument)

(28) a. Every student studies semantics \Rightarrow Every linguistics student studies semantics
b. Every linguistic student studies semantics \nRightarrow Every student studies semantics
Downward entailment (left argument)
(29) a. Every student who has ever studied semantics loves it
b. *Every student who has studied semantics ever loves it
c. Few students who have ever studied semantics dislike it
d. Few students who have studied semantics ever dislike it
$>$ Formal models of quantification can be used to make predictions about seemingly unrelated phenomena

In other languages too！

（30）我 没有 任何 朋友
wǒ méi－yǒu rènhé péngyǒu
I neg－have any friend
＂I don＇t have any friends．＂
（31）＊我 有 任何 朋友
wǒ yǒu rènhé péngyǒu
I have any friend
＊＂I have any friends．＂

Modality

Modality as a scale of Implicatures

(32) I know that p
(33) I am absolutely certain that p
(34) I am almost certain that p
(35) I believe that p
(36) I am pretty certain that p
(37) Possibly p
(38) It is very unlikely that p
(39) It is almost impossible that p
(40) It is impossible that p
(41) It is not the case that p
(42) I am absolutely certain that not-p

Modal Logics

$>$ Add two modal operators for epistemic modality
$>\diamond \phi=$ it is possible that ϕ
$>\square \phi=$ it is necessary that ϕ
$>$ Define them in terms of possible worlds
$\gg \phi:$ true in at least one world
$>\square \phi$: true in all worlds
> $M=\{W, U, F\}$: the model now has three parts
W set of possible worlds
U domain of individuals (universe)
F denotation assignment function

Deontic Modality

$>$ Add two modal operators for deontic modality
$>\mathrm{P} \phi=$ it is permitted that ϕ
$>\mathrm{O} \phi=$ it is obligatorily ϕ
$>$ Define them in terms of possible worlds
$>\mathrm{P} \phi$: true in at least one legal or morally ideal world
$>\mathrm{O} \phi$: true in all legal or morally ideal worlds

Dynamic Approaches to Discourse

Anaphora

(43) a. R2D2 $_{i}$ mistrusts $^{\text {itself }}{ }_{i}$
b. $M(r, r)$
(44) a. Every robot mistrusts itself
b. $(\forall x: R(x)) M(x, x)$
(45) a. Luke bought a robot and it doesn't work
b. $(\exists x: R(x)) B(1, x) \wedge \neg W(x)$
(46) a. Every robot went to Naboo. ?It met Jar Jar.
b. $(\forall x: R(x)) W(x, n) ; M(x, j)$
unbound
(47) a. A robot went to Naboo. It met Jar Jar.
b. ($\exists \mathrm{x}: \mathrm{R}(\mathrm{x})) \mathrm{W}(\mathrm{x}, \mathrm{n}) ; \mathrm{M}(\mathrm{x}, \mathrm{j})$
indefinite nominals exist beyond the sentence: discourse referents
(48) a. Luke didn't buy a robot. ?It met Jar Jar. indefinite nominals scope can still be limited

Donkey Sentences

(49) a. If $R 2 D 2_{i}$ owns a ship it is rich
b. $(\exists x(S(x) \wedge O(r, x))) \rightarrow R(x)$
(50) a. If a robot owns a ship it races it
b. $\quad *(\exists x \exists y(R(x) \wedge S(y) \wedge O(x, y))) \rightarrow R(x, y)$
c. $\forall x \forall y((R(x) \wedge S(y) \wedge O(x, y)) \rightarrow R(x, y)$
\exists needs to become \forall
(51) Every farmer who owns a donkey beats it

Discourse Representation Theory

> Build up Discourse Representation Structures
(52) a. Alex met a robot $_{i}$
b. $\quad t_{i}$ smiled

$x y u$
$\operatorname{Alex}(x)$
$\operatorname{robot}(y)$
$\operatorname{met}(x, y)$
$u=y$
smiled(u)

Negative Contexts

a. Luke does not own a robot
(55)

$>$ The contained DRS is subordinate
$>$ indefinite NPs in negated subordinate structures are inaccessible
$>$ names (constants) are always accessible

Conditionals

(56) a. If Jo owns a robot then they are rich

\geqslant The contained DRS is subordinate
$>$ indefinite NPs in the antecedent are accessible in the consequent

More Conditionals

(58) a. If a Jedi owns a robot then they are rich

$>$ The contained DRS is subordinate
$>$ indefinite NPs in the antecedent are accessible in the consequent

More Conditionals

(60) a. If a Jedi owns a robot then they race it

\geqslant The contained DRS is subordinate
$>$ indefinite NPs in the antecedent are accessible in the consequent

More Conditionals

(62) a. Every Jedi who owns a robot races it

$>$ The contained DRS is subordinate
$>$ Universal Quantifiers copy the variable across the conditional

Discourse Representation Theory

$>$ Explains how reference occurs across clauses and sentences
$>$ Distinguishes between names and indefinite NPS
$>$ Distinguishes between positive assertions, negative sentences, conditional sentences, universally quantified sentences
$>$ Is useful for modeling the incremental update of knowledge in a conversation

Acknowledgments and References

> Video Regency Disco from that Mitchel and Webb Look Episode 3.3, which was first broadcast on Thursday 25th June 2009.

