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Introduction The distributional hypothesis

Meaning & distribution

I “Die Bedeutung eines Wortes liegt in seinem Gebrauch.”
— Ludwig Wittgenstein

I “You shall know a word by the company it keeps!”
— J. R. Firth (1957)

I Distributional hypothesis: difference of meaning correlates
with difference of distribution (Zellig Harris 1954)

I “What people know when they say that they know a word is
not how to recite its dictionary definition – they know how to
use it [. . . ] in everyday discourse.” (Miller 1986)
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Introduction The distributional hypothesis

What is the meaning of “bardiwac”?

I He handed her her glass of bardiwac.
I Beef dishes are made to complement the bardiwacs.
I Nigel staggered to his feet, face flushed from too much

bardiwac.
I Malbec, one of the lesser-known bardiwac grapes, responds

well to Australia’s sunshine.
I I dined off bread and cheese and this excellent bardiwac.
I The drinks were delicious: blood-red bardiwac as well as light,

sweet Rhenish.
+ bardiwac is a heavy red alcoholic beverage made from grapes

The examples above are handpicked, of course. But in a corpus like the
BNC, you will find at least as many informative sentences.
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Introduction The distributional hypothesis

A thought experiment: deciphering hieroglyphs

get sij ius hir iit kil
(knife) naif 51 20 84 0 3 0
(cat) ket 52 58 4 4 6 26
??? dog 115 83 10 42 33 17
(boat) beut 59 39 23 4 0 0
(cup) kap 98 14 6 2 1 0
(pig) pigij 12 17 3 2 9 27
(banana) nana 11 2 2 0 18 0
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Introduction The distributional hypothesis

English as seen by the computer . . .

get see use hear eat kill
get sij ius hir iit kil

knife naif 51 20 84 0 3 0
cat ket 52 58 4 4 6 26
dog dog 115 83 10 42 33 17
boat beut 59 39 23 4 0 0
cup kap 98 14 6 2 1 0
pig pigij 12 17 3 2 9 27
banana nana 11 2 2 0 18 0

verb-object counts from British National Corpus
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Introduction The distributional hypothesis

Geometric interpretation

I row vector xdog
describes usage of
word dog in the
corpus

I can be seen as
coordinates of point
in n-dimensional
Euclidean space

get see use hear eat kill
knife 51 20 84 0 3 0
cat 52 58 4 4 6 26
dog 115 83 10 42 33 17
boat 59 39 23 4 0 0
cup 98 14 6 2 1 0
pig 12 17 3 2 9 27

banana 11 2 2 0 18 0

co-occurrence matrix M
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Introduction The distributional hypothesis

Geometric interpretation

I row vector xdog
describes usage of
word dog in the
corpus

I can be seen as
coordinates of point
in n-dimensional
Euclidean space

I illustrated for two
dimensions:
get and use

I xdog = (115, 10) ●
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Introduction The distributional hypothesis

Semantic distances

I main result of distributional
analysis are “semantic”
distances between words

I typical applications
I nearest neighbours
I clustering of related words
I construct semantic map

I other applications require
clever use of the distance
information

I semantic relations
I relational analogies
I word sense disambiguation
I detection of multiword

expressions
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Introduction The distributional hypothesis

Some applications in computational linguistics
I Unsupervised part-of-speech induction (Schütze 1995)
I Word sense disambiguation (Schütze 1998)
I Query expansion in information retrieval (Grefenstette 1994)
I Synonym tasks & other language tests

(Landauer and Dumais 1997; Turney et al. 2003)
I Thesaurus compilation (Lin 1998a; Rapp 2004)
I Ontology & wordnet expansion (Pantel et al. 2009)
I Attachment disambiguation (Pantel and Lin 2000)
I Probabilistic language models (Bengio et al. 2003)
I Subsymbolic input representation for neural networks
I Many other tasks in computational semantics:

entailment detection, noun compound interpretation,
identification of noncompositional expressions, . . .
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Introduction Three famous DSM examples
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Introduction Three famous DSM examples

Latent Semantic Analysis (Landauer and Dumais 1997)

I Corpus: 30,473 articles from Grolier’s Academic American
Encyclopedia (4.6 million words in total)

+ articles were limited to first 2,000 characters
I Word-article frequency matrix for 60,768 words

I row vector shows frequency of word in each article
I Logarithmic frequencies scaled by word entropy
I Reduced to 300 dim. by singular value decomposition (SVD)

I borrowed from LSI (Dumais et al. 1988)
+ central claim: SVD reveals latent semantic features,

not just a data reduction technique
I Evaluated on TOEFL synonym test (80 items)

I LSA model achieved 64.4% correct answers
I also simulation of learning rate based on TOEFL results
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Introduction Three famous DSM examples

Word Space (Schütze 1992, 1993, 1998)

I Corpus: ≈ 60 million words of news messages
I from the New York Times News Service

I Word-word co-occurrence matrix
I 20,000 target words & 2,000 context words as features
I row vector records how often each context word occurs close

to the target word (co-occurrence)
I co-occurrence window: left/right 50 words (Schütze 1998)

or ≈ 1000 characters (Schütze 1992)
I Rows weighted by inverse document frequency (tf.idf)
I Context vector = centroid of word vectors (bag-of-words)

+ goal: determine “meaning” of a context
I Reduced to 100 SVD dimensions (mainly for efficiency)
I Evaluated on unsupervised word sense induction by clustering

of context vectors (for an ambiguous word)
I induced word senses improve information retrieval performance
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Introduction Three famous DSM examples

HAL (Lund and Burgess 1996)

I HAL = Hyperspace Analogue to Language
I Corpus: 160 million words from newsgroup postings
I Word-word co-occurrence matrix

I same 70,000 words used as targets and features
I co-occurrence window of 1 – 10 words

I Separate counts for left and right co-occurrence
I i.e. the context is structured

I In later work, co-occurrences are weighted by (inverse)
distance (Li et al. 2000)

I Applications include construction of semantic vocabulary
maps by multidimensional scaling to 2 dimensions
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Introduction Three famous DSM examples

Many parameters . . .

I Enormous range of DSM parameters and applications
I Examples showed three entirely different models, each tuned

to its particular application
å Need overview of DSM parameters & understand their effects
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Taxonomy of DSM parameters Definition & overview

General definition of DSMs

A distributional semantic model (DSM) is a scaled and/or
transformed co-occurrence matrix M, such that each row x
represents the distribution of a target term across contexts.

get see use hear eat kill
knife 0.027 -0.024 0.206 -0.022 -0.044 -0.042
cat 0.031 0.143 -0.243 -0.015 -0.009 0.131
dog -0.026 0.021 -0.212 0.064 0.013 0.014
boat -0.022 0.009 -0.044 -0.040 -0.074 -0.042
cup -0.014 -0.173 -0.249 -0.099 -0.119 -0.042
pig -0.069 0.094 -0.158 0.000 0.094 0.265

banana 0.047 -0.139 -0.104 -0.022 0.267 -0.042

Term = word, lemma, phrase, morpheme, word pair, . . .
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Taxonomy of DSM parameters Definition & overview

General definition of DSMs

Mathematical notation:
I k × n co-occurrence matrix M (example: 7× 6 matrix)

I k rows = target terms
I n columns = features or dimensions

M =


m11 m12 · · · m1n
m21 m22 · · · m2n
...

...
...

mk1 mk2 · · · mkn


I distribution vector mi = i-th row of M, e.g. m3 = mdog
I components mi = (mi1,mi2, . . . ,min) = features of i-th term:

m3 = (−0.026, 0.021,−0.212, 0.064, 0.013, 0.014)
= (m31,m32,m33,m34,m35,m36)
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Taxonomy of DSM parameters Definition & overview

Overview of DSM parameters

Term-context vs. term-term matrix

⇓
Definition of terms & linguistic pre-processing

⇓
Size & type of context

⇓
Geometric vs. probabilistic interpretation

⇓
Feature scaling

⇓
Normalisation of rows and/or columns

⇓
Similarity / distance measure

⇓
Dimensionality reduction
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Taxonomy of DSM parameters DSM parameters

Term-context matrix

Term-context matrix records frequency of term in each individual
context (e.g. sentence, document, Web page, encyclopaedia article)

F =



· · · f1 · · ·
· · · f2 · · ·

...

...
· · · fk · · ·


Fe
lid
ae

Pe
t

Fe
ra
l

Bl
oa
t

Ph
ilo
so
ph
y

Ka
nt

Ba
ck

pa
in

cat 10 10 7 – – – –
dog – 10 4 11 – – –

animal 2 15 10 2 – – –
time 1 – – – 2 1 –

reason – 1 – – 1 4 1
cause – – – 2 1 2 6
effect – – – 1 – 1 –
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Taxonomy of DSM parameters DSM parameters

Term-context matrix

Some footnotes:
I Features are usually context tokens, i.e. individual instances
I Can also be generalised to context types, e.g.

I bag of content words
I specific pattern of POS tags
I n-gram of words (or POS tags) around target
I subcategorisation pattern of target verb

I Term-context matrix is often very sparse
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Taxonomy of DSM parameters DSM parameters

Term-term matrix

Term-term matrix records co-occurrence frequencies with feature
terms for each target term

M =



· · · m1 · · ·
· · · m2 · · ·

...

...
· · · mk · · ·


br
ee
d

ta
il

fee
d

kil
l

im
po
rta

nt
ex
pla

in
lik
ely

cat 83 17 7 37 – 1 –
dog 561 13 30 60 1 2 4

animal 42 10 109 134 13 5 5
time 19 9 29 117 81 34 109

reason 1 – 2 14 68 140 47
cause – 1 – 4 55 34 55
effect – – 1 6 60 35 17

+ we will usually assume a term-term matrix
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Taxonomy of DSM parameters DSM parameters

Term-term matrix

Some footnotes:
I Often target terms 6= feature terms

I e.g. nouns described by co-occurrences with verbs as features
I identical sets of target & feature terms Ü symmetric matrix

I Different types of contexts (Evert 2008)
I surface context (word or character window)
I textual context (non-overlapping segments)
I syntactic contxt (specific syntagmatic relation)

I Can be seen as smoothing of term-context matrix
I average over similar contexts (with same context terms)
I data sparseness reduced, except for small windows
I we will take a closer look at the relation between term-context

and term-term models later in this tutorial
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Overview of DSM parameters

Term-context vs. term-term matrix
⇓

Definition of terms & linguistic pre-processing
⇓

Size & type of context
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Normalisation of rows and/or columns
⇓

Similarity / distance measure
⇓

Dimensionality reduction
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Corpus pre-processing
I Minimally, corpus must be tokenised Ü identify terms
I Linguistic annotation

I part-of-speech tagging
I lemmatisation / stemming
I word sense disambiguation (rare)
I shallow syntactic patterns
I dependency parsing

I Generalisation of terms
I often lemmatised to reduce data sparseness:

go, goes, went, gone, going Ü go
I POS disambiguation (light/N vs. light/A vs. light/V)
I word sense disambiguation (bankriver vs. bankfinance)

I Trade-off between deeper linguistic analysis and
I need for language-specific resources
I possible errors introduced at each stage of the analysis
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Effects of pre-processing

Nearest neighbors of walk (BNC)

word forms
I stroll
I walking
I walked
I go
I path
I drive
I ride
I wander
I sprinted
I sauntered

lemmatised corpus

I hurry
I stroll
I stride
I trudge
I amble
I wander
I walk-nn
I walking
I retrace
I scuttle
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Effects of pre-processing

Nearest neighbors of arrivare (Repubblica)

word forms
I giungere
I raggiungere
I arrivi
I raggiungimento
I raggiunto
I trovare
I raggiunge
I arrivasse
I arriverà
I concludere

lemmatised corpus

I giungere
I aspettare
I attendere
I arrivo-nn
I ricevere
I accontentare
I approdare
I pervenire
I venire
I piombare
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Overview of DSM parameters

Term-context vs. term-term matrix
⇓

Definition of terms & linguistic pre-processing
⇓

Size & type of context
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Normalisation of rows and/or columns
⇓

Similarity / distance measure
⇓

Dimensionality reduction
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Surface context

Context term occurs within a window of k words around target.

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
I window size (in words or characters)
I symmetric vs. one-sided window
I uniform or “triangular” (distance-based) weighting
I window clamped to sentences or other textual units?
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Effect of different window sizes

Nearest neighbours of dog (BNC)

2-word window
I cat
I horse
I fox
I pet
I rabbit
I pig
I animal
I mongrel
I sheep
I pigeon

30-word window
I kennel
I puppy
I pet
I bitch
I terrier
I rottweiler
I canine
I cat
I to bark
I Alsatian
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Textual context

Context term is in the same linguistic unit as target.

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
I type of linguistic unit

I sentence
I paragraph
I turn in a conversation
I Web page
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Syntactic context

Context term is linked to target by a syntactic dependency
(e.g. subject, modifier, . . . ).

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It’s
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
I types of syntactic dependency (Padó and Lapata 2007)
I direct vs. indirect dependency paths

I direct dependencies
I direct + indirect dependencies

I homogeneous data (e.g. only verb-object) vs.
heterogeneous data (e.g. all children and parents of the verb)

I maximal length of dependency path
© Evert/Baroni/Lenci (CC-by-sa) DSM Tutorial – Part 1 39 / 91
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“Knowledge pattern” context

Context term is linked to target by a lexico-syntactic pattern
(text mining, cf. Hearst 1992, Pantel & Pennacchiotti 2008, etc.).

In Provence, Van Gogh painted with bright colors such as red and
yellow. These colors produce incredible effects on anybody looking
at his paintings.

Parameters:
I inventory of lexical patterns

I lots of research to identify semantically interesting patterns
(cf. Almuhareb & Poesio 2004, Veale & Hao 2008, etc.)

I fixed vs. flexible patterns
I patterns are mined from large corpora and automatically

generalised (optional elements, POS tags or semantic classes)
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Structured vs. unstructured context

I In unstructered models, context specification acts as a filter
I determines whether context tokens counts as co-occurrence
I e.g. linked by specific syntactic relation such as verb-object

I In structured models, context words are subtyped
I depending on their position in the context
I e.g. left vs. right context, type of syntactic relation, etc.

DSM Tutorial – Part 1 41 / 91



Taxonomy of DSM parameters DSM parameters

Structured vs. unstructured context

I In unstructered models, context specification acts as a filter
I determines whether context tokens counts as co-occurrence
I e.g. linked by specific syntactic relation such as verb-object

I In structured models, context words are subtyped
I depending on their position in the context
I e.g. left vs. right context, type of syntactic relation, etc.

DSM Tutorial – Part 1 41 / 91



Taxonomy of DSM parameters DSM parameters

Structured vs. unstructured surface context

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

unstructured bite
dog 4
man 3

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

structured bite-l bite-r
dog 3 1
man 1 2
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Structured vs. unstructured dependency context

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

unstructured bite
dog 4
man 2

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

structured bite-subj bite-obj
dog 3 1
man 0 2
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Comparison

I Unstructured context
I data less sparse (e.g. man kills and kills man both map to the

kill dimension of the vector xman)

I Structured context
I more sensitive to semantic distinctions

(kill-subj and kill-obj are rather different things!)
I dependency relations provide a form of syntactic “typing” of

the DSM dimensions (the “subject” dimensions, the
“recipient” dimensions, etc.)

I important to account for word-order and compositionality
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Overview of DSM parameters

Term-context vs. term-term matrix
⇓

Definition of terms & linguistic pre-processing
⇓

Size & type of context
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Normalisation of rows and/or columns
⇓

Similarity / distance measure
⇓

Dimensionality reduction

DSM Tutorial – Part 1 45 / 91



Taxonomy of DSM parameters DSM parameters

Geometric vs. probabilistic interpretation

I Geometric interpretation
I row vectors as points or arrows in n-dim. space
I very intuitive, good for visualisation
I use techniques from geometry and linear algebra

I Probabilistic interpretation
I co-occurrence matrix as observed sample statistic
I “explained” by generative probabilistic model
I recent work focuses on hierarchical Bayesian models
I probabilistic LSA (Hoffmann 1999), Latent Semantic

Clustering (Rooth et al. 1999), Latent Dirichlet Allocation
(Blei et al. 2003), etc.

I explicitly accounts for random variation of frequency counts
I intuitive and plausible as topic model

+ focus on geometric interpretation in this tutorial
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Overview of DSM parameters

Term-context vs. term-term matrix
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⇓
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Feature scaling

Feature scaling is used to “discount” less important features:
I Logarithmic scaling: x ′ = log(x + 1)

(cf. Weber-Fechner law for human perception)

I Relevance weighting, e.g. tf.idf (information retrieval)
I Statistical association measures (Evert 2004, 2008) take

frequency of target word and context feature into account
I the less frequent the target word and (more importantly) the

context feature are, the higher the weight given to their
observed co-occurrence count should be (because their
expected chance co-occurrence frequency is low)

I different measures – e.g., mutual information, log-likelihood
ratio – differ in how they balance observed and expected
co-occurrence frequencies
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Association measures: Mutual Information (MI)

word1 word2 fobs f1 f2
dog small 855 33,338 490,580
dog domesticated 29 33,338 918

Expected co-occurrence frequency:

fexp = f1 · f2
N

Mutual Information compares observed vs. expected frequency:

MI(w1,w2) = log2
fobs
fexp

= log2
N · fobs
f1 · f2

Disadvantage: MI overrates combinations of rare terms.
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Other association measures

word1 word2 fobs fexp MI

local-MI t-score

dog small 855 134.34 2.67

2282.88 24.64

dog domesticated 29 0.25 6.85

198.76 5.34

dog sgjkj 1 0.00027 11.85

11.85 1.00

The log-likelihood ratio (Dunning 1993) has more complex form,
but its “core” is known as local MI (Evert 2004).

local-MI(w1,w2) = fobs ·MI(w1,w2)

The t-score measure (Church and Hanks 1990) is popular in
lexicography:

t-score(w1,w2) = fobs − fexp√
fobs

Details & many more measures: http://www.collocations.de/
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Overview of DSM parameters

Term-context vs. term-term matrix
⇓

Definition of terms & linguistic pre-processing
⇓

Size & type of context
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Normalisation of rows and/or columns
⇓

Similarity / distance measure
⇓

Dimensionality reduction

DSM Tutorial – Part 1 51 / 91



Taxonomy of DSM parameters DSM parameters

Normalisation of row vectors

I geometric distances only
make sense if vectors are
normalised to unit length

I divide vector by its length:

x/‖x‖

I normalisation depends on
distance measure!

I special case: scale to
relative frequencies with
‖x‖1 = |x1|+ · · ·+ |xn|
Ü probabilistic
interpretation
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Scaling of column vectors

I In statistical analysis and machine learning, features are
usually centred and scaled so that

mean µ = 0
variance σ2 = 1

I In DSM research, this step is less common for columns of M
I centring is a prerequisite for certain dimensionality reduction

and data analysis techniques (esp. PCA)
I scaling may give too much weight to rare features

I M cannot be row-normalised and column-scaled at the same
time (result depends on ordering of the two steps)
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Geometric distance

I Distance between vectors
u, v ∈ Rn Ü (dis)similarity

I u = (u1, . . . , un)
I v = (v1, . . . , vn)

I Euclidean distance d2 (u, v)
I “City block” Manhattan

distance d1 (u, v)
I Both are special cases of the
Minkowski p-distance dp (u, v)
(for p ∈ [1,∞])

x1

v

x2

1 2 3 4 5

1

2

3

4

5

6

6 u

d2 (!u,!v) = 3.6

d1 (!u,!v) = 5
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Other distance measures

I Information theory: Kullback-Leibler (KL) divergence for
probability vectors (non-negative, ‖x‖1 = 1)

D(u‖v) =
n∑

i=1
ui · log2

ui
vi

I Properties of KL divergence
I most appropriate in a probabilistic interpretation of M
I zeroes in v without corresponding zeroes in u are problematic
I not symmetric, unlike geometric distance measures
I alternatives: skew divergence, Jensen-Shannon divergence

I A symmetric distance measure (Endres and Schindelin 2003)

Duv = D(u‖z) + D(v‖z) with z = u + v
2
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Similarity measures

I angle α between two
vectors u, v is given by

cosα =
∑n

i=1 ui · vi√∑
i u2i ·

√∑
i v2i

= 〈u, v〉
‖u‖2 · ‖v‖2

I cosine measure of
similarity: cosα

I cosα = 1 Ü collinear
I cosα = 0 Ü orthogonal
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Taxonomy of DSM parameters DSM parameters

Overview of DSM parameters

Term-context vs. term-term matrix
⇓

Definition of terms & linguistic pre-processing
⇓

Size & type of context
⇓

Geometric vs. probabilistic interpretation
⇓

Feature scaling
⇓

Normalisation of rows and/or columns
⇓

Similarity / distance measure
⇓

Dimensionality reduction
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Taxonomy of DSM parameters DSM parameters

Dimensionality reduction = model compression

I Co-occurrence matrix M is often unmanageably large
and can be extremely sparse

I Google Web1T5: 1M × 1M matrix with one trillion cells, of
which less than 0.05% contain nonzero counts (Evert 2010)

å Compress matrix by reducing dimensionality (= rows)

I Feature selection: columns with high frequency & variance
I measured by entropy, chi-squared test, . . .
I may select correlated (Ü uninformative) dimensions
I joint selection of multiple features is useful but expensive

I Projection into (linear) subspace
I principal component analysis (PCA)
I independent component analysis (ICA)
I random indexing (RI)

+ intuition: preserve distances between data points
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Taxonomy of DSM parameters DSM parameters

Dimensionality reduction & latent dimensions

Landauer and Dumais (1997) claim that LSA dimensionality
reduction (and related PCA technique) uncovers latent
dimensions by exploiting correlations between features.

I Example: term-term matrix
I V-Obj cooc’s extracted from BNC

I targets = noun lemmas
I features = verb lemmas

I feature scaling: association scores
(modified log Dice coefficient)

I k = 111 nouns with f ≥ 20
(must have non-zero row vectors)

I n = 2 dimensions: buy and sell

noun buy sell
bond 0.28 0.77
cigarette -0.52 0.44
dress 0.51 -1.30
freehold -0.01 -0.08
land 1.13 1.54
number -1.05 -1.02
per -0.35 -0.16
pub -0.08 -1.30
share 1.92 1.99
system -1.63 -0.70
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Taxonomy of DSM parameters DSM parameters

Dimensionality reduction & latent dimensions
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Taxonomy of DSM parameters DSM parameters

Motivating latent dimensions & subspace projection

I The latent property of being a commodity is “expressed”
through associations with several verbs: sell, buy, acquire, . . .

I Consequence: these DSM dimensions will be correlated

I Identify latent dimension by looking for strong correlations
(or weaker correlations between large sets of features)

I Projection into subspace V of k < n latent dimensions
as a “noise reduction” technique Ü LSA

I Assumptions of this approach:
I “latent” distances in V are semantically meaningful
I other “residual” dimensions represent chance co-occurrence

patterns, often particular to the corpus underlying the DSM
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Taxonomy of DSM parameters DSM parameters

The latent “commodity” dimension

0 1 2 3 4

0
1

2
3

4

buy

se
ll

acre

advertising

amount

arm

asset

bag

beer
bill

bit

bond book

bottle

box
bread

building

business

car

card

carpet

cigarette
clothe

club

coal

collection
company

computer

copy

couple

currency

dress

drink

drug
equipmentestate

farm

fish

flat

flower

food
freehold

fruitfurniture

good

home

horse

house

insurance

item

kind

land

licence

liquor

lot
machine

material

meat milk
mill

newspaper

number

oil

one

packpackage
packet

painting

pair

paperpart

per

petrol

picture

piece

place

plant

player

pound

productproperty

pub

quality

quantity

range

record

right

seat
security

service

set

share

shoe

shop

site
software

stake

stamp

stock

stuff

suit

system

television

thing

ticket

time

tin

unit

vehicle

video

wine

work

year

DSM Tutorial – Part 1 63 / 91



Taxonomy of DSM parameters Examples

Outline

Introduction
The distributional hypothesis
Three famous DSM examples

Taxonomy of DSM parameters
Definition & overview
DSM parameters
Examples

DSM in practice
Using DSM distances
Quantitative evaluation
Software and further information
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Taxonomy of DSM parameters Examples

Some well-known DSM examples
Latent Semantic Analysis (Landauer and Dumais 1997)

I term-context matrix with document context
I weighting: log term frequency and term entropy
I distance measure: cosine
I dimensionality reduction: SVD

Hyperspace Analogue to Language (Lund and Burgess 1996)

I term-term matrix with surface context
I structured (left/right) and distance-weighted frequency counts
I distance measure: Minkowski metric (1 ≤ p ≤ 2)
I dimensionality reduction: feature selection (high variance)
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Taxonomy of DSM parameters Examples

Some well-known DSM examples
Infomap NLP (Widdows 2004)

I term-term matrix with unstructured surface context
I weighting: none
I distance measure: cosine
I dimensionality reduction: SVD

Random Indexing (Karlgren and Sahlgren 2001)

I term-term matrix with unstructured surface context
I weighting: various methods
I distance measure: various methods
I dimensionality reduction: random indexing (RI)
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Taxonomy of DSM parameters Examples

Some well-known DSM examples
Dependency Vectors (Padó and Lapata 2007)

I term-term matrix with unstructured dependency context
I weighting: log-likelihood ratio
I distance measure: information-theoretic (Lin 1998b)
I dimensionality reduction: none

Distributional Memory (Baroni and Lenci 2010)

I term-term matrix with structured and unstructered
dependencies + knowledge patterns

I weighting: local-MI on type frequencies of link patterns
I distance measure: cosine
I dimensionality reduction: none
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DSM in practice Using DSM distances

Outline

Introduction
The distributional hypothesis
Three famous DSM examples

Taxonomy of DSM parameters
Definition & overview
DSM parameters
Examples

DSM in practice
Using DSM distances
Quantitative evaluation
Software and further information
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DSM in practice Using DSM distances

Nearest neighbours
DSM based on verb-object relations from BNC, reduced to 100 dim. with SVD

Neighbours of dog (cosine angle):
+ girl (45.5), boy (46.7), horse(47.0), wife (48.8), baby (51.9),

daughter (53.1), side (54.9), mother (55.6), boat (55.7), rest
(56.3), night (56.7), cat (56.8), son (57.0), man (58.2), place
(58.4), husband (58.5), thing (58.8), friend (59.6), . . .

Neighbours of school:
+ country (49.3), church (52.1), hospital (53.1), house (54.4),

hotel (55.1), industry (57.0), company (57.0), home (57.7),
family (58.4), university (59.0), party (59.4), group (59.5),
building (59.8), market (60.3), bank (60.4), business (60.9),
area (61.4), department (61.6), club (62.7), town (63.3),
library (63.3), room (63.6), service (64.4), police (64.7), . . .
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DSM in practice Using DSM distances

Nearest neighbours
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DSM in practice Using DSM distances

Semantic maps
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DSM in practice Using DSM distances

Clustering
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DSM in practice Using DSM distances

Latent dimensions
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DSM in practice Using DSM distances

Semantic similarity graph (topological structure)
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DSM in practice Using DSM distances

Semantic similarity graph (topological structure)
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DSM in practice Using DSM distances

Context vectors (Schütze 1998)

Distributional representation
only at type level

+ What is the “average”
meaning of mouse?
(computer vs. animal)

Context vector approximates
meaning of individual token

I bag-of-words approach:
centroid of all context
words in the sentence animals
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DSM in practice Quantitative evaluation

Outline

Introduction
The distributional hypothesis
Three famous DSM examples

Taxonomy of DSM parameters
Definition & overview
DSM parameters
Examples

DSM in practice
Using DSM distances
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Software and further information
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DSM in practice Quantitative evaluation

The TOEFL synonym task

I The TOEFL dataset
I 80 items
I Target: levied

Candidates: believed, correlated, imposed, requested

I Target fashion
Candidates: craze, fathom, manner, ration

I DSMs and TOEFL
1. take vectors of the target (t) and of the candidates (c1 . . . cn)
2. measure the distance between t and ci , with 1 ≤ i ≤ n
3. select ci with the shortest distance in space from t
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DSM in practice Quantitative evaluation

Humans vs. machines on the TOEFL task

I Average foreign test taker: 64.5%

I Macquarie University staff (Rapp 2004):
I Average of 5 non-natives: 86.75%
I Average of 5 natives: 97.75%

I Distributional semantics
I Classic LSA (Landauer and Dumais 1997): 64.4%
I Padó and Lapata’s (2007) dependency-based model: 73.0%
I Distributional memory (Baroni and Lenci 2010): 76.9%
I Rapp’s (2004) SVD-based model, lemmatized BNC: 92.5%
I Bullinaria and Levy (2012) carry out aggressive parameter

optimization: 100.0%
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DSM in practice Quantitative evaluation

Semantic similarity judgments

I Rubenstein and Goodenough (1965) collected similarity
ratings for 65 noun pairs from 51 subjects on a 0–4 scale

w1 w2 avg. rating
car automobile 3.9
food fruit 2.7
cord smile 0.0

I DSMs vs. Rubenstein & Goodenough
1. for each test pair (w1,w2), take vectors w1 and w2
2. measure the distance (e.g. cosine) between w1 and w2
3. measure (Pearson) correlation between vector distances and

R&G average judgments (Padó and Lapata 2007)
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1. for each test pair (w1,w2), take vectors w1 and w2
2. measure the distance (e.g. cosine) between w1 and w2
3. measure (Pearson) correlation between vector distances and

R&G average judgments (Padó and Lapata 2007)
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Semantic similarity judgments: example
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Semantic similarity judgments: results

Results on RG65 task:
I Padó and Lapata’s (2007) dependency-based model: 0.62
I Dependency-based on Web corpus (Herdağdelen et al. 2009)

I without SVD reduction: 0.69
I with SVD reduction: 0.80

I Distributional memory (Baroni and Lenci 2010): 0.82
I Salient Semantic Analysis (Hassan and Mihalcea 2011): 0.86
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Outline

Introduction
The distributional hypothesis
Three famous DSM examples

Taxonomy of DSM parameters
Definition & overview
DSM parameters
Examples

DSM in practice
Using DSM distances
Quantitative evaluation
Software and further information
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Software packages

HiDEx C++ re-implementation of the HAL model
(Lund and Burgess 1996)

SemanticVectors Java scalable architecture based on random
indexing representation

S-Space Java complex object-oriented framework
JoBimText Java UIMA / Hadoop framework
Gensim Python complex framework, focus on paral-

lelization and out-of-core algorithms
DISSECT Python user-friendly, designed for research on

compositional semantics
wordspace R interactive research laboratory, but

scales to real-life data sets

click on package name to open Web page
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http://www.psych.ualberta.ca/~westburylab/downloads/HiDEx.download.html
http://code.google.com/p/semanticvectors/
http://github.com/fozziethebeat/S-Space
http://maggie.lt.informatik.tu-darmstadt.de/jobimtext/
http://radimrehurek.com/gensim/
http://clic.cimec.unitn.it/composes/toolkit/
http://wordspace.r-forge.r-project.org/
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Recent conferences and workshops
I 2007: CoSMo Workshop (at Context ’07)
I 2008: ESSLLI Lexical Semantics Workshop & Shared Task,

Special Issue of the Italian Journal of Linguistics
I 2009: GeMS Workshop (EACL 2009), DiSCo Workshop

(CogSci 2009), ESSLLI Advanced Course on DSM
I 2010: 2nd GeMS (ACL 2010), ESSLLI Workshop on

Compositionality and DSM, DSM Tutorial (NAACL 2010),
Special Issue of JNLE on Distributional Lexical Semantics

I 2011: 2nd DiSCo (ACL 2011), 3rd GeMS (EMNLP 2011)
I 2012: DiDaS (at ICSC 2012)
I 2013: CVSC (ACL 2013), TFDS (IWCS 2013), Dagstuhl
I 2014: 2nd CVSC (at EACL 2014)

click on Workshop name to open Web page
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http://clic.cimec.unitn.it/marco/beyond_words/
http://wordspace.collocations.de/doku.php/workshop:esslli:start
http://wordspace.collocations.de/doku.php/workshop:esslli:task
http://linguistica.sns.it/RdL/2008.html
http://art.uniroma2.it/gems/
http://www.let.rug.nl/disco2009/
http://wordspace.collocations.de/doku.php/course:esslli2009:start
http://art.uniroma2.it/gems010/
http://clic.cimec.unitn.it/roberto/ESSLLI10-dsm-workshop/
http://clic.cimec.unitn.it/roberto/ESSLLI10-dsm-workshop/
http://naaclhlt2010.isi.edu/tutorials/t4.html
http://journals.cambridge.org/action/displayIssue?iid=7911772
http://disco2011.fzi.de
https://sites.google.com/site/geometricalmodels/
http://didas.org
https://sites.google.com/site/cvscworkshop/
http://clic.cimec.unitn.it/roberto/IWCS-TFDS2013/
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=13462
https://sites.google.com/site/cvscworkshop2014/
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Further information

I Handouts & other materials available from wordspace wiki at
http://wordspace.collocations.de/

+ based on joint work with Marco Baroni and Alessandro Lenci
I Tutorial is open source (CC), and can be downloaded from

http://r-forge.r-project.org/projects/wordspace/

I Review paper on distributional semantics:
Turney, Peter D. and Pantel, Patrick (2010). From frequency
to meaning: Vector space models of semantics. Journal of
Artificial Intelligence Research, 37, 141–188.

I I should be working on textbook Distributional Semantics for
Synthesis Lectures on HLT (Morgan & Claypool)
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