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ST
Meaning & distribution

> “Die Bedeutung eines Wortes liegt in seinem Gebrauch.”
— Ludwig Wittgenstein

> “You shall know a word by the company it keeps!”
— J. R. Firth (1957)

» Distributional hypothesis: difference of meaning correlates
with difference of distribution (Zellig Harris 1954)

» “What people know when they say that they know a word is
not how to recite its dictionary definition — they know how to
use it [...] in everyday discourse.” (Miller 1986)
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What is the meaning of “bardiwac”?

=] F
DSM Tutorial — Part 1

DA

5/01



What is the meaning of “bardiwac”?

> He handed her her glass of bardiwac.
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What is the meaning of “bardiwac”?

> He handed her her glass of bardiwac.

» Beef dishes are made to complement the bardiwacs
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What is the meaning of “bardiwac”?

> He handed her her glass of bardiwac.
» Beef dishes are made to complement the bardiwacs.

> Nigel staggered to his feet, face flushed from too much
bardiwac.
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What is the meaning of “bardiwac”?

v

He handed her her glass of bardiwac.

v

Beef dishes are made to complement the bardiwacs.

v

Nigel staggered to his feet, face flushed from too much
bardiwac.

v

Malbec, one of the lesser-known bardiwac grapes, responds
well to Australia’s sunshine.
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What is the meaning of “bardiwac”?

> He handed her her glass of bardiwac.
» Beef dishes are made to complement the bardiwacs.

> Nigel staggered to his feet, face flushed from too much
bardiwac.

» Malbec, one of the lesser-known bardiwac grapes, responds
well to Australia’s sunshine.

» | dined off bread and cheese and this excellent bardiwac.

» The drinks were delicious: blood-red bardiwac as well as light,
sweet Rhenish.
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What is the meaning of “bardiwac”?

> He handed her her glass of bardiwac.
» Beef dishes are made to complement the bardiwacs.

> Nigel staggered to his feet, face flushed from too much
bardiwac.

» Malbec, one of the lesser-known bardiwac grapes, responds
well to Australia’s sunshine.

» | dined off bread and cheese and this excellent bardiwac.

» The drinks were delicious: blood-red bardiwac as well as light,
sweet Rhenish.

1= bardiwac is a heavy red alcoholic beverage made from grapes

The examples above are handpicked, of course. But in a corpus like the
BNC, you will find at least as many informative sentences.
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Introdu

ion The distributional hypothesis

What is the meaning of “bardiwac”?

Home||Concordance|Word List|[Word Sketch|Thesaurus|Sketch-Diff| (Corpus: British National Corpus|
T
[View options| [Sample] [Filier][Sort][Frequency] [Collocation) [Save Hits: 192

conc description
Page of 10 Go|| Next] Last

AOD the doctor. </p=><p=> "Just checking on the bardiwac | he boomed as he came back. “Edith's very
AOD </p><p>"Thope you'll take to a good French bardiwac |, chimed in Arthur Iverson jovially. " One

AOD “Our host did slip out to attend to the bardiwac &hellip;' </p><p> "That was before the shrimp
AOD TIverson did when he went through to see to the bardiwac before dinner. Henry rubbed his hands.

AON and drinking red wine from France -- sour bardiwac , which had proved hard to sell. The room

AON eyes were alight and he was drinking the bardiwac down like water. "It is like Hallow-fair

AON quizzically at him and offering him some more bardiwac . </p=><p= He shook his head. *T will sleep
A3C  drinks (as Queen Victoria reputedly did with bardiwac and malt whisky), but still the result

A3C Do we really “wash down' a good meal with bardiwac 7 Port is immediately suggested by Stilton

A3C completely different: cheap and cheerful bardiwac . Two good examples from Victoria Wine are
A3C examples from Victoria Wine are its house bardiwac , juicy and a touch almondy, a good buy

ASE opened a bottle of rather rust-coloured bardiwac . I ate too much and drank nearly three-quarters
A66 elections, it was apparent the SDP of * bardiwac and chips' mould-breaking fame at the time

AAD the black hills. Not a night of vintage bardiwac . </p><p> Burnley: Pearce, Measham, McGrory

ABS SONS OId School -- the Marlborian navy, bardiwac and slim-white stripe. Heavy woven silk
ABS white-hot passion. We are like a good bottle of bardiwac ; we both have sediment in our shoes. </p>

AE0 few minutes later he was uncorking a fine bardiwac in Masha's room, saying he had something
AE0 the phone. Surkov silently offered me more bardiwac but I indicated a bottle of Perrier. </p>
AHU defenders as Villa swept past them like a8 bardiwac and blue tidal wave. </p><p> Things are difficult

AJM campaign. Refreshed by a nimble in-flight bardiwac |, they serenaded him with a special song
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What is the meaning of “bardiwac”?

bar diwac British National Corpus freq = 230

uncork 1898
gulp 1661
sport 1 5.6
‘water 1534
drink 7513
sip 1 48
‘warm 1428
complement 14.15
‘waste 1293
paint 12.38

plummy
Sancerre
Willson
scampi
burgundy
garb

1933
19.14
1893
1823
18.18
17.02

16.59

]
5

sought 1856

swig
tinge

1721
1644
24635
1629
14.64
1463
16438
2366
42.83
1276

plausible

[
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A thought experiment: deciphering hieroglyphs

Beoa | Mo [ ples | Ws | Sle
(knife) ~N [ 51 | 20 |84 0
(cat) =< | 52 58 | 4 4 6 26
77?7 —Flm | 115 | 83 [ 10| 42 | 33 17
(boat) Jofa| 59 | 39 | 23| 4 0 0
(cup) =No | 98 | 14 2 0
(pig) ol | 12 |17 [ 3] 2 9 27
(banana) .R._.} 11 2 2 0 18 0
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The distributional hypothesis
A thought experiment: deciphering hieroglyphs

Baa [N [T [mle [Hs | Sl

(knife) ~Nl | 51 |20 |8]| 0 3 0
(cat) << [ 52 58 | 4 4 6 26
777 —Fflm | 115 | 83 [10| 42 | 33| 17
(boat) Jafa| 59 | 39 [ 23| 4 0 0
(cup) <o | 98 | 14 2 1

(pig) ol | 12 [ 17 | 3] 2 9 27
(banana) B} 11 2 2 0 18 0

sim(—fla, ~Al_) = 0.770
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The distributional hypothesis
A thought experiment: deciphering hieroglyphs

Beoa | Mo [ ples | Ws | Sle
(knife) ~N [ 51 |20 (8] 0 3 0
(cat) =< | 52 58 | 4 4 6 26
77?7 —Flm | 115 | 83 [ 10| 42 | 33 17
(boat) Jofa| 59 | 39 | 23| 4 0 0
(cup) =No | 98 | 14 2 0
(pig) el | 12 |17 | 3| 2 9 27
(banana) .R._.} 11 2 0 18 0

sim (s, olal) = 0.939

DSM Tutorial — Part 1 7 /91



A thought experiment: deciphering hieroglyphs

Beoa | Mo [ ples | Ws | Sle
(knife) ~N [ 51 |20 (8] 0 0
(cat) —aa | 52 58 | 4 4 6 26
77?7 —Flm | 115 | 83 [ 10| 42 | 33 17
(boat) Jofa| 59 | 39 | 23| 4 0 0
(cup) =No | 98 | 14 2 0
(pig) ol | 12 |17 [ 3] 2 9 27
(banana) .R._.} 11 2 2 0 18 0

sim(=fla, ==-) = 0.961
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English as seen by the computer ...

get see | use | hear | eat kill
Beo | Mo | 11 | mle [0 | Sle

knife XNl | 51 [ 20 |8 | 0 3 0
cat SV SN 52 58 4 4 6 26
dog =Fw | 115 | 83 | 10 | 42 | 33 17
boat Jofa| 59 | 39 [ 23| 4 0 0
cup <=MNo | 98 14| 6 2 1 0
pig el | 12 | 17 | 3 2 9 27
banana —. N .. 1\ 11 2 2 0 18 0

verb-object counts from British National Corpus
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Geometric interpretation

> row vector Xdog
describes usage of
word dog in the
corpus

> can be seen as
coordinates of point
in n-dimensional
Euclidean space

get | see | use | hear | eat | kill
knife | 51 | 20 [ 84 0 3 0
cat | 52 | 58 4 4 6 | 26
dog | 115 | 83 | 10 42 | 33 | 17
boat | 59 | 39 | 23 4 0 0
cup | 98 | 14 6 2 1 0
pig | 12 | 17 3 2 9 | 27
banana | 11 2 2 0 18] 0

co-occurrence matrix M
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Geometric interpretation

Two dimensions of English V-Obj DSM

> row vector Xdog 9 |
. -
describes usage of
word dog in the S -
corpus knife
o ]
> can be seen as @
coordinates of point
. . . aQ o
in n-dimensional - °
Euclidean space .
. < 7
» illustrated for two
. . boat
dimensions: g o
get and use cat dog
[ ]
> Xdog = (115, 10) o T T T T T T
0 20 40 60 80 100 120
get
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Geometric interpretation

Two dimensions of English V-Obj DSM

> similarity = spatial 8 -
proximity
(Euclidean dist.) 8
> |ocation depends on kn.ife
frequency of noun 8
(f;iog ~ 2.7 fcat) o °
S ©
<°r —
boat d
& ° =575
d
catb i
°
e \ \ \ \ \ \
0 20 40 60 80 100 120
get
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Geometric interpretation

Two dimensions of English V-Obj DSM

> similarity = spatial 8 -
proximity
(Euclidean dist.) 8
> |ocation depends on kn.ife
frequency of noun 8
(ﬁjog 2.7 fcat) g o
g |
» direction more ©
important than s |
location boat
o _| { ]
A dog
o >
e \ . T T T
0 20 40 60 80 100 120
get
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Geometric interpretation

Two dimensions of English V-Obj DSM

> similarity = spatial 8
proximity
(Euclidean dist.) 8
> location depends on kn.ife
frequency of noun 8
(ﬁjog ~2.7- fcat) o °
» direction more Co°
important than 2
location boat
» normalise “length” 8 * dog
[|Xdog || of vector _cat °
e \ . 1 T T
0 20 40 60 80 100 120
get
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Geometric interpretation

Two dimensions of English V-Obj DSM

> similarity = spatial 8 -
proximity
(Euclidean dist.) 8
> location depends on kn.ife
o _|
frequency of noun ® .
(ﬁiog 2.7 - ﬁ:at) 2 o :
. . > © - o
» direction more . a 54.3
important than g
location boat
. “ n o _| )
> normalize “length & “ dog
|| Xdog|| of vector _cat - o
>
» or use angle « as ° ‘ ‘ T \ T !
_ 0 20 40 60 80 100 120
distance measure
get
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» main result of distributional

analysis are “semantic”
distances between words
> typical applications
> nearest neighbours

» clustering of related words

» construct semantic map

» other applications require
clever use of the distance
information

» semantic relations

relational analogies

>
» word sense disambiguation
>

T
DSM Tutorial — Part 1

detection of multiword
expressions

-0.2

04

Semantic distances

Word space clustering of concrete nouns (V-Obj from BNC)

10

Semantic map (V-Obj from BNC)

onion  potato kettle « bird
. . ° groundAnimal
mushroom = fruitTree
= chicken cup « green
« banana et « 100l
owl .
A e oWl e |+ vehicle
B cherry « © . . N
g Ton %99 * = pear com pen
; ‘pmea.pp\e' - spoon
cow
elep Lo PO telephone o o ke
p enci
eagle j ok rocket pey
— . owl h
s Motorcycle
svan® ook e OO hammer
penguin el
« helicopter chisel
turtle Pt © o screwdriver
scissors
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Some applications in computational linguistics

» Unsupervised part-of-speech induction (Schiitze 1995)
» Word sense disambiguation (Schiitze 1998)
» Query expansion in information retrieval (Grefenstette 1994)

» Synonym tasks & other language tests
(Landauer and Dumais 1997; Turney et al. 2003)

» Thesaurus compilation (Lin 1998a; Rapp 2004)

» Ontology & wordnet expansion (Pantel et al. 2009)
» Attachment disambiguation (Pantel and Lin 2000)

» Probabilistic language models (Bengio et al. 2003)

» Subsymbolic input representation for neural networks

» Many other tasks in computational semantics:
entailment detection, noun compound interpretation,
identification of noncompositional expressions, . ..

DSM Tutorial — Part 1 15 /91



Three famous DSM examples
Outline

Introduction

Three famous DSM examples

=] F
DSM Tutorial — Part 1




Three famous DSM examples
Latent Semantic Analysis (Landauer and Dumais 1997)

» Corpus: 30,473 articles from Grolier's Academic American
Encyclopedia (4.6 million words in total)

15 articles were limited to first 2,000 characters

v

Word-article frequency matrix for 60,768 words
» row vector shows frequency of word in each article

v

Logarithmic frequencies scaled by word entropy
Reduced to 300 dim. by singular value decomposition (SVD)
» borrowed from LSI (Dumais et al. 1988)
i central claim: SVD reveals latent semantic features,
not just a data reduction technique
Evaluated on TOEFL synonym test (80 items)

» LSA model achieved 64.4% correct answers
» also simulation of learning rate based on TOEFL results

v

v
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Three famous DSM examples
Word Space (Schiitze 1992, 1993, 1998)

» Corpus: = 60 million words of news messages
» from the New York Times News Service
» Word-word co-occurrence matrix
» 20,000 target words & 2,000 context words as features
» row vector records how often each context word occurs close
to the target word (co-occurrence)
» co-occurrence window: left/right 50 words (Schiitze 1998)
or 2 1000 characters (Schiitze 1992)
» Rows weighted by inverse document frequency (tf.idf)
» Context vector = centroid of word vectors (bag-of-words)
1= goal: determine “meaning” of a context
» Reduced to 100 SVD dimensions (mainly for efficiency)

» Evaluated on unsupervised word sense induction by clustering
of context vectors (for an ambiguous word)
» induced word senses improve information retrieval performance

DSM Tutorial — Part 1 18 / 91



Three famous DSM examples
HAL (Lund and Burgess 1996)

» HAL = Hyperspace Analogue to Language
» Corpus: 160 million words from newsgroup postings

» Word-word co-occurrence matrix

» same 70,000 words used as targets and features
» co-occurrence window of 1 — 10 words

» Separate counts for left and right co-occurrence
> i.e. the context is structured
» In later work, co-occurrences are weighted by (inverse)
distance (Li et al. 2000)

» Applications include construction of semantic vocabulary
maps by multidimensional scaling to 2 dimensions

DSM Tutorial — Part 1 19 /91



Introduction Three famous DSM examples

Many parameters ...

» Enormous range of DSM parameters and applications

» Examples showed three entirely different models, each tuned
to its particular application

= Need overview of DSM parameters & understand their effects

DSM Tutorial — Part 1 20 /91



Definition & overview
Outline

Taxonomy of DSM parameters
Definition & overview
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Definition & overview
General definition of DSMs

A distributional semantic model (DSM) is a scaled and/or
transformed co-occurrence matrix M, such that each row x
represents the distribution of a target term across contexts.

get see use hear eat kill
knife | 0.027 | -0.024 | 0.206 | -0.022 | -0.044 | -0.042
cat | 0.031 | 0.143 | -0.243 | -0.015 | -0.009 | 0.131
dog | -0.026 | 0.021 | -0.212 | 0.064 | 0.013 | 0.014
boat | -0.022 | 0.009 | -0.044 | -0.040 | -0.074 | -0.042
cup | -0.014 | -0.173 | -0.249 | -0.099 | -0.119 | -0.042
pig | -0.069 | 0.094 [ -0.158 | 0.000 | 0.094 | 0.265
banana | 0.047 | -0.139 | -0.104 | -0.022 | 0.267 | -0.042

Term = word, lemma, phrase, morpheme, word pair, ...
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Definition & overview
General definition of DSMs

Mathematical notation:
» k x n co-occurrence matrix M (example: 7 x 6 matrix)

> k rows = target terms
» n columns = features or dimensions

mi1 M2 Mmin

mz1 My map
M= .

mg1  Mg2 Mgp

» distribution vector m; = j-th row of M, e.g. m3 = myq,

» components m; = (mj1, mj2, ..., m;,) = features of i-th term:

ms = (—0.026,0.021, —0.212, 0.064, 0.013,0.014)

= (m31, m32, m33, M34, M35, M3g)

DSM Tutorial — Part 1
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Taxonomy of DSM parameters Definition & overview

Overview of DSM parameters

Term-context vs. term-term matrix
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Taxonomy of DSM parameters Definition & overview

Overview of DSM parameters

Term-context vs. term-term matrix

4

Definition of terms & linguistic pre-processing
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Taxonomy of DSM parameters Definition & overview

Overview of DSM parameters

Term-context vs. term-term matrix

4
Definition of terms & linguistic pre-processing
4
Size & type of context
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Taxonomy of DSM parameters Definition & overview

Overview of DSM parameters

Term-context vs. term-term matrix

4

Definition of terms & linguistic pre-processing

4

Size & type of context

4

Geometric vs. probabilistic interpretation
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Taxonomy of DSM parameters Definition & overview

Overview of DSM parameters

Term-context vs. term-term matrix

4

Definition of terms & linguistic pre-processing

4

Size & type of context

4

Geometric vs. probabilistic interpretation

4

Feature scaling
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Taxonomy of DSM parameters Definition & overview

Overview of DSM parameters

Term-context vs. term-term matrix

4
Definition of terms & linguistic pre-processing
4
Size & type of context
4
Geometric vs. probabilistic interpretation
!
Feature scaling
I

Normalisation of rows and/or columns
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Taxonomy of DSM parameters Definition & overview

Overview of DSM parameters

Term-context vs. term-term matrix

4
Definition of terms & linguistic pre-processing
4
Size & type of context

4

Geometric vs. probabilistic interpretation
!

Feature scaling

I

Normalisation of rows and/or columns
!

Similarity / distance measure
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Taxonomy of DSM parameters Definition & overview

Overview of DSM parameters

Term-context vs. term-term matrix

4
Definition of terms & linguistic pre-processing
4
Size & type of context

4

Geometric vs. probabilistic interpretation
!

Feature scaling

I

Normalisation of rows and/or columns
!

Similarity / distance measure

I

Dimensionality reduction
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DSM parameters
Outline

Taxonomy of DSM parameters

DSM parameters
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Taxonomy of DSM parameters DSM parameters

Overview of DSM parameters

Term-context vs. term-term matrix

4
Definition of terms & linguistic pre-processing
4
Size & type of context

4

Geometric vs. probabilistic interpretation
!

Feature scaling

U

Normalisation of rows and/or columns
I

Similarity / distance measure

I

Dimensionality reduction
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Taxonomy of DSM parameters DSM parameters

Term-context matrix

Term-context matrix records frequency of term in each individual
context (e.g. sentence, document, Web page, encyclopaedia article)

y 5
(2 [e) Q
T > i & o~
EFTESTES
fro- at [T 7T =T-1-1-
- dog [= [0 & [T ==~
F— : animal | 2 |15 (10| 2 | -|-|-
B time | 1 [ - [ - 21 1=
: reason | — 1 - 114(1
R cause [ — [ - | - [ 2 ]1]2]6
i i effect [ = | = | = | T [-]1]-
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Taxonomy of DSM parameters DSM parameters

Term-context matrix

Some footnotes:
» Features are usually context tokens, i.e. individual instances

» Can also be generalised to context types, e.g.

» bag of content words

» specific pattern of POS tags

» n-gram of words (or POS tags) around target
» subcategorisation pattern of target verb

» Term-context matrix is often very sparse

DSM Tutorial — Part 1 28 /91



Taxonomy of DSM parameters DSM parameters

Term-term matrix

Term-term matrix records co-occurrence frequencies with feature
terms for each target term

~
>
> § & o
) ] LS
mp - cat [ 8317 7 [37[-T1T7 -
m; - dog [ 561|13| 30|60 | 1] 2 4
M — . animal | 42 110109134 (13| 5 5
time | 19929 [117]81] 34 |109
: reason 1 -1 21141681401 47
ceeomy e cause [ — [ 1| — [ 4 |55] 34|55
B - effect - |- 1] 6 |60]35]17

1= we will usually assume a term-term matrix
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Taxonomy of DSM parameters DSM parameters

Term-term matrix

Some footnotes:
» Often target terms # feature terms
» e.g. nouns described by co-occurrences with verbs as features
» identical sets of target & feature terms =» symmetric matrix
» Different types of contexts (Evert 2008)
» surface context (word or character window)
» textual context (non-overlapping segments)
» syntactic contxt (specific syntagmatic relation)
» Can be seen as smoothing of term-context matrix
» average over similar contexts (with same context terms)
» data sparseness reduced, except for small windows
» we will take a closer look at the relation between term-context
and term-term models later in this tutorial

DSM Tutorial — Part 1 30 /91



Taxonomy of DSM parameters DSM parameters

Overview of DSM parameters

Term-context vs. term-term matrix

4
Definition of terms & linguistic pre-processing
4
Size & type of context

4

Geometric vs. probabilistic interpretation
!

Feature scaling

I

Normalisation of rows and/or columns
U

Similarity / distance measure

.

Dimensionality reduction
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Taxonomy of DSM parameters DSM parameters

Corpus pre-processing

» Minimally, corpus must be tokenised = identify terms
» Linguistic annotation

part-of-speech tagging

lemmatisation / stemming

word sense disambiguation (rare)

shallow syntactic patterns

dependency parsing

vV vy vV VvVYy
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Taxonomy of DSM parameters DSM parameters

Corpus pre-processing

» Minimally, corpus must be tokenised = identify terms
» Linguistic annotation

part-of-speech tagging

lemmatisation / stemming

word sense disambiguation (rare)

shallow syntactic patterns

dependency parsing

vV vy vV VvVYy

» Generalisation of terms

» often lemmatised to reduce data sparseness:

go, goes, went, gone, going =¥ go
» POS disambiguation (light/N vs. light/A vs. light/V)
» word sense disambiguation (bankyer vs. bankfinance)
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Taxonomy of DSM parameters DSM parameters

Corpus pre-processing

v

Minimally, corpus must be tokenised = identify terms

v

Linguistic annotation

part-of-speech tagging
lemmatisation / stemming

word sense disambiguation (rare)
shallow syntactic patterns
dependency parsing

vV vy vV VvVYy

Generalisation of terms

v

» often lemmatised to reduce data sparseness:

go, goes, went, gone, going =¥ go
» POS disambiguation (light/N vs. light/A vs. light/V)
» word sense disambiguation (bankyer vs. bankfinance)

v

Trade-off between deeper linguistic analysis and

» need for language-specific resources
» possible errors introduced at each stage of the analysis
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Taxonomy of DSM parameters DSM parameters

Effects of pre-processing

word forms

>
>
>
>
>
>
>
>
>
>

stroll
walking
walked
go

path
drive
ride
wander
sprinted

sauntered

Nearest neighbors of walk (BNC)

lemmatised corpus

>
>
>
>
| 2
>
>
>
>
>

hurry
stroll
stride
trudge
amble
wander
walk-nn
walking
retrace

scuttle
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Taxonomy of DSM parameters DSM parameters

Effects of pre-processing

Nearest neighbors of arrivare (Repubblica)

word forms lemmatised corpus

> giungere > giungere

» raggiungere > aspettare

» arrivi > attendere

»> raggiungimento > arrivo-nn

» raggiunto » ricevere

> trovare > accontentare
> raggiunge > approdare
> arrivasse > pervenire

> arrivera > venire

» concludere » piombare
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Taxonomy of DSM parameters DSM parameters

Overview of DSM parameters

Term-context vs. term-term matrix

4
Definition of terms & linguistic pre-processing
4
Size & type of context

4

Geometric vs. probabilistic interpretation
!

Feature scaling

I

Normalisation of rows and/or columns
U

Similarity / distance measure

.

Dimensionality reduction
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Taxonomy of DSM parameters DSM parameters

Surface context

Context term occurs within a window of k words around target.

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It's
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
» window size (in words or characters)
> symmetric vs. one-sided window
» uniform or “triangular” (distance-based) weighting

» window clamped to sentences or other textual units?
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Taxonomy of DSM parameters DSM parameters

Effect of different window sizes

Nearest neighbours of dog (BNC)

2-word window 30-word window
> cat > kennel
» horse > puppy
> fox > pet
> pet > bitch
> rabbit > terrier
> pig > rottweiler
» animal > canine
» mongrel > cat
> sheep > to bark
> pigeon > Alsatian
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Taxonomy of DSM parameters DSM parameters

Textual context

Context term is in the same linguistic unit as target.

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It's
midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:
> type of linguistic unit
» sentence
» paragraph
> turn in a conversation
» Web page
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Syntactic context

Context term is linked to target by a syntactic dependency
(e.g. subject, modifier, ...).

The silhouette of the sun beyond a wide-open bay on the lake; the
sun still glitters although evening has arrived in Kuhmo. It's

midsummer; the living room has its instruments and other objects
in each of its corners.

Parameters:

» types of syntactic dependency (Pad6 and Lapata 2007)
» direct vs. indirect dependency paths
» direct dependencies
» direct + indirect dependencies
» homogeneous data (e.g. only verb-object) vs.
heterogeneous data (e.g. all children and parents of the verb)
» maximal length of dependency path

© Evert/Baroni/Lenci (CC-by-sa) DSM Tutorial — Part 1
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“Knowledge pattern” context

Context term is linked to target by a lexico-syntactic pattern
(text mining, cf. Hearst 1992, Pantel & Pennacchiotti 2008, etc.).

In Provence, Van Gogh painted with bright colors such as red and
yellow. These colors produce incredible effects on anybody looking
at his paintings.

Parameters:
> inventory of lexical patterns

> lots of research to identify semantically interesting patterns
(cf. Almuhareb & Poesio 2004, Veale & Hao 2008, etc.)

» fixed vs. flexible patterns

> patterns are mined from large corpora and automatically
generalised (optional elements, POS tags or semantic classes)
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Structured vs. unstructured context

» In unstructered models, context specification acts as a filter

» determines whether context tokens counts as co-occurrence
» e.g. linked by specific syntactic relation such as verb-object
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Structured vs. unstructured context

» In unstructered models, context specification acts as a filter

» determines whether context tokens counts as co-occurrence
» e.g. linked by specific syntactic relation such as verb-object

> In structured models, context words are subtyped

» depending on their position in the context
> e.g. left vs. right context, type of syntactic relation, etc.
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Structured vs. unstructured surface context

A dog bites a man. The man's dog bites a dog. A dog bites a man

unstructured | bite

dog | 4

3

man

=] F
DSM Tutorial — Part 1

42 /91



Taxonomy of DSM parameters DSM parameters

Structured vs. unstructured surface context

A dog bites a man. The man’s dog bites a dog. A dog bites a man.
unstructured | bite

dog | 4
man 3

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

structured | bite-l | bite-r
dog 3 1
man 1 2
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Structured vs. unstructured dependency context

A dog bites a man. The man's dog bites a dog. A dog bites a man

unstructured | bite

dog | 4

2

man

=] F
DSM Tutorial — Part 1
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Structured vs. unstructured dependency context

A dog bites a man. The man’s dog bites a dog. A dog bites a man.
unstructured | bite

dog | 4
man 2

A dog bites a man. The man’s dog bites a dog. A dog bites a man.

structured | bite-subj | bite-obj
dog 3 1
man 0 2
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Comparison

» Unstructured context
» data less sparse (e.g. man kills and kills man both map to the
kill dimension of the vector Xman)

» Structured context

» more sensitive to semantic distinctions
(kill-subj and kill-obj are rather different things!)

» dependency relations provide a form of syntactic “typing” of
the DSM dimensions (the “subject” dimensions, the
“recipient” dimensions, etc.)

» important to account for word-order and compositionality
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Overview of DSM parameters

Term-context vs. term-term matrix

4

Definition of terms & linguistic pre-processing
4

Size & type of context

4

Geometric vs. probabilistic interpretation
!

Feature scaling
I
Normalisation of rows and/or columns
!
Similarity / distance measure

I

Dimensionality reduction
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Geometric vs. probabilistic interpretation

» Geometric interpretation

> row vectors as points or arrows in n-dim. space
» very intuitive, good for visualisation
» use techniques from geometry and linear algebra
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Geometric vs. probabilistic interpretation

» Geometric interpretation
> row vectors as points or arrows in n-dim. space
» very intuitive, good for visualisation
» use techniques from geometry and linear algebra

» Probabilistic interpretation

» co-occurrence matrix as observed sample statistic
“explained” by generative probabilistic model
recent work focuses on hierarchical Bayesian models
probabilistic LSA (Hoffmann 1999), Latent Semantic
Clustering (Rooth et al. 1999), Latent Dirichlet Allocation
(Blei et al. 2003), etc.
» explicitly accounts for random variation of frequency counts
» intuitive and plausible as topic model

v vVvYyy
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Geometric vs. probabilistic interpretation

» Geometric interpretation
> row vectors as points or arrows in n-dim. space
» very intuitive, good for visualisation
» use techniques from geometry and linear algebra

» Probabilistic interpretation

» co-occurrence matrix as observed sample statistic
“explained” by generative probabilistic model
recent work focuses on hierarchical Bayesian models
probabilistic LSA (Hoffmann 1999), Latent Semantic
Clustering (Rooth et al. 1999), Latent Dirichlet Allocation
(Blei et al. 2003), etc.
» explicitly accounts for random variation of frequency counts
» intuitive and plausible as topic model

v vVvYyy

== focus on geometric interpretation
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Overview of DSM parameters

Term-context vs. term-term matrix

4
Definition of terms & linguistic pre-processing
4
Size & type of context

4

Geometric vs. probabilistic interpretation
!

Feature scaling

I

Normalisation of rows and/or columns
U

Similarity / distance measure

.

Dimensionality reduction
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Feature scaling
Feature scaling is used to “discount” less important features:

» Logarithmic scaling: x" = log(x + 1)
(cf. Weber-Fechner law for human perception)
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Feature scaling

Feature scaling is used to “discount” less important features:

» Logarithmic scaling: x" = log(x + 1)
(cf. Weber-Fechner law for human perception)

» Relevance weighting, e.g. tf.idf (information retrieval)
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Taxonomy of DSM parameters DSM parameters

Feature scaling

Feature scaling is used to “discount” less important features:

» Logarithmic scaling: x" = log(x + 1)
(cf. Weber-Fechner law for human perception)

» Relevance weighting, e.g. tf.idf (information retrieval)

» Statistical association measures (Evert 2004, 2008) take
frequency of target word and context feature into account

> the less frequent the target word and (more importantly) the
context feature are, the higher the weight given to their
observed co-occurrence count should be (because their
expected chance co-occurrence frequency is low)

» different measures — e.g., mutual information, log-likelihood
ratio — differ in how they balance observed and expected
co-occurrence frequencies
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Association measures: Mutual Information (MI)

wordy  words fobs fi f
dog small 855 33,338 490,580
dog domesticated 29 33,338

918

=] F
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Association measures: Mutual Information (MI)

wordy  words fobs fi f
dog small 855 33,338 490,580
dog domesticated 29 33,338 918

Expected co-occurrence frequency:
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Association measures: Mutual Information (MI)

wordy  words fobs fi f
dog small 855 33,338 490,580
dog domesticated 29 33,338 918

Expected co-occurrence frequency:

h-f
N

fexp =

Mutual Information compares observed vs. expected frequency:

fob
MI(wi, ws) = log, — = lo
(wi, wo) B2~ &g
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Taxonomy of DSM parameters DSM parameters

Association measures: Mutual Information (MI)

wordy  words fobs fi f
dog small 855 33,338 490,580
dog domesticated 29 33,338 0918

Expected co-occurrence frequency:

Mutual Information compares observed vs. expected frequency:

fobs N - f
MI(wy, wo) = |08§2f = log; i ;bs
exp

Disadvantage: MI overrates combinations of rare terms.
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Other association measures

word;  word» fobs fexp Ml
dog small 855 13434  2.67
dog domesticated 29 0.25 6.85
dog sgjkj 1 0.00027 11.85
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Taxonomy of DSM parameters DSM parameters

Other association measures

word;  word» fobs fexp Ml local-Ml
dog small 855 13434 2.67 2282.88
dog domesticated 29 0.25 6.85 198.76
dog sgjkj 1 0.00027 11.85 11.85

The log-likelihood ratio (Dunning 1993) has more complex form,
but its “core” is known as local MI (Evert 2004).

|Oca|—M|(W1, W2) = '%bs . Ml(Wl, W2)
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Taxonomy of DSM parameters DSM parameters

Other association measures

word;  word» fobs fexp Ml local-MI  t-score
dog small 855 13434 2.67 2282.88 24.64
dog domesticated 29 0.25 6.85 198.76 5.34
dog sgjkj 1 0.00027 11.85 11.85 1.00

The log-likelihood ratio (Dunning 1993) has more complex form,
but its “core” is known as local MI (Evert 2004).

|0C3|—M|(W1, W2) = '%bs . Ml(Wl, W2)
The t-score measure (Church and Hanks 1990) is popular in
lexicography:
fobs - ﬁexp
f:)bs
Details & many more measures: http://www.collocations.de/
50 / 91
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Overview of DSM parameters

Term-context vs. term-term matrix

4
Definition of terms & linguistic pre-processing
4
Size & type of context

4

Geometric vs. probabilistic interpretation
!

Feature scaling

I

Normalisation of rows and/or columns
U

Similarity / distance measure

.

Dimensionality reduction
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Normalisation of row vectors

» geometric distances only
make sense if vectors are
normalised to unit length

Two dimensions of English V-Obj DSM

» divide vector by its length:

x/ Il

» normalisation depends on
distance measure!

knife

use

40

boat
{ ]

> special case: scale to dog
. . . cat L
relative frequencies with
“X||1 = ’X1| + -+ |Xn| 0 20 40 60 80 100 120
-» probabilistic get
interpretation

20
|
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Scaling of column vectors

> In statistical analysis and machine learning, features are
usually centred and scaled so that

mean pu =0

variance 0% =1

» In DSM research, this step is less common for columns of M

» centring is a prerequisite for certain dimensionality reduction
and data analysis techniques (esp. PCA)
» scaling may give too much weight to rare features
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Taxonomy of DSM parameters DSM parameters

Scaling of column vectors

> In statistical analysis and machine learning, features are
usually centered and scaled so that

mean pu =0

variance 0% =1

» In DSM research, this step is less common for columns of M
» centering is prerequisite for certain dimensionality reduction
and data analysis techniques (esp. PCA)
» scaling may give too much weight to rare features
» M cannot be row-normalised and column-scaled at the same
time (result depends on ordering of the two steps)

DSM Tutorial — Part 1

53 / 01



Taxonomy of DSM parameters DSM parameters

Overview of DSM parameters

Term-context vs. term-term matrix

4
Definition of terms & linguistic pre-processing
4
Size & type of context

4

Geometric vs. probabilistic interpretation
!

Feature scaling

I

Normalisation of rows and/or columns
U

Similarity / distance measure

.

Dimensionality reduction
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DSM parameters
Geometric distance

- X
» Distance between vectors ZA
u,v € R" = (dis)similarity 61 u
» u=(u1,...,U,) s+
> v=(vi,...,Vp) A & (@,5) =5
dy (@,7) = 3.6
3__
2+ <V
A
1 1 1 1 1 L
T T T T T LI
1 2 3 4 5 6 X1
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DSM parameters
Geometric distance

- X
» Distance between vectors A
u,v € R" = (dis)similarity 61 u
» u=(u1,...,U,) s
> v=(vi,...,Vp) A &y (@,5) =5
» Euclidean distance d> (u, v) s =
2+ <V
A
1 1 1 1 1 L
T T T T T LI
12 3 4 5 6 X1
d> (u,v) = \/(Ul—Vl 4 (up — vn)?
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DSM parameters
Geometric distance

- X
» Distance between vectors ‘A
u,v € R" = (dis)similarity 61 u
» u=(u1,...,U,) s
> v=(vi,...,Vp) A & (@,5) =5
» Euclidean distance d> (u, v) s =
» “City block” Manhattan 2t <V
distance dj (u,v) 1+
1 1 1 1 1 L
I I I I I L
12 3 4 5 6 A

di(u,v) =g —vi| + -+ |up — vy
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Geometric distance

» Distance between vectors 2
u,v € R"” = (dis)similarity 6+ u
» u=(u1,...,U,) s+
> v=(vi,...,Vp) A & (@,5) =5
» Euclidean distance ds (u,v) s B0
» “City block” Manhattan 24 <V
distance dj (u,v) 1+
» Both are special cases of the —————>
1 2 3 4 5 6 1

Minkowski p-distance d, (u, v)
(for p € [1,00])

dp (U,V) = (|ul _ V1|P 4+ .+ |un _ Vn|p)1/p
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DSM parameters
Geometric distance

» Distance between vectors 22
u,v € R" = (dis)similarity 6+
» u=(u1,...,U,) s
> v=(vi,...,Vp) 4
» Euclidean distance d> (u,v) it
» “City block” Manhattan 21
distance dj (u,v) 1+
» Both are special cases of the —————>
1 2 3 4 5 6 1

Minkowski p-distance d, (u, v)
(for p € [1,00])

dp (U,V) = (|ul _ V1|P 4+ .+ |un _ Vn|p)1/p

doo (u,v) = max{|ug — val,..., |un — va|
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Taxonomy of DSM parameters DSM parameters

Other distance measures

» Information theory: Kullback-Leibler (KL) divergence for
probability vectors (non-negative, ||x||; = 1)

(u|lv) = Z uj - Iog2

=] F
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Other distance measures

» Information theory: Kullback-Leibler (KL) divergence for
probability vectors (non-negative, ||x||; = 1)

D(ul|v) = Zu, Iog2

» Properties of KL divergence

| 4

>
>
>

most appropriate in a probabilistic interpretation of M

zeroes in v without corresponding zeroes in u are problematic
not symmetric, unlike geometric distance measures
alternatives: skew divergence, Jensen-Shannon divergence
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Taxonomy of DSM parameters DSM parameters

Other distance measures

» Information theory: Kullback-Leibler (KL) divergence for
probability vectors (non-negative, ||x||; = 1)

(u|lv) = Z uj - Iog2

> Properties of KL divergence
» most appropriate in a probabilistic interpretation of M
» zeroes in v without corresponding zeroes in u are problematic
» not symmetric, unlike geometric distance measures
> alternatives: skew divergence, Jensen-Shannon divergence

» A symmetric distance measure (Endres and Schindelin 2003)

u-+v
2
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Taxonomy of DSM parameters DSM parameters

Similarity measures

Two dimensions of English V-Obj DSM

» angle o between two g
vectors u, v is given by
o
g |
cosq = i Ui Vi 3 i
= 3 _
\/Ziu?'\/Zi Vi2 o
g g g o
B <u7 V> © a=54.3
[Jull2 - [lv]]2 ]
boat
o _| { ]
& dog
cat o
° — T T T T

get
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Similarity measures

» angle o between two
vectors u, v is given by

Yo Uit Vi

Cosox =

\/Zi U?'\/Zi Vi2

(u, v)
[Jull2 - [lvll2

» cosine measure of
similarity: cos«
» cosa = 1 =» collinear
» cosa = 0 - orthogonal

40 60 80 100 120

20

Two dimensions of English V-Obj DSM

knife
@
o =54.3°
boat
{ ]
dog
cat o

20 40 60 80 100 120

get
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Overview of DSM parameters

Term-context vs. term-term matrix

4
Definition of terms & linguistic pre-processing
4
Size & type of context

4

Geometric vs. probabilistic interpretation
!

Feature scaling

I

Normalisation of rows and/or columns
U

Similarity / distance measure

.

Dimensionality reduction
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Dimensionality reduction = model compression

» Co-occurrence matrix M is often unmanageably large
and can be extremely sparse

» Google Web1T5: 1M x 1M matrix with one trillion cells, of
which less than 0.05% contain nonzero counts (Evert 2010)

= Compress matrix by reducing dimensionality (= rows)
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Dimensionality reduction = model compression

» Co-occurrence matrix M is often unmanageably large
and can be extremely sparse

» Google Web1T5: 1M x 1M matrix with one trillion cells, of
which less than 0.05% contain nonzero counts (Evert 2010)

= Compress matrix by reducing dimensionality (= rows)

» Feature selection: columns with high frequency & variance

» measured by entropy, chi-squared test, ...
» may select correlated (= uninformative) dimensions
> joint selection of multiple features is useful but expensive
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Taxonomy of DSM parameters DSM parameters

Dimensionality reduction = model compression

» Co-occurrence matrix M is often unmanageably large
and can be extremely sparse

» Google Web1T5: 1M x 1M matrix with one trillion cells, of
which less than 0.05% contain nonzero counts (Evert 2010)

= Compress matrix by reducing dimensionality (= rows)

» Feature selection: columns with high frequency & variance
» measured by entropy, chi-squared test, ...
» may select correlated (= uninformative) dimensions
> joint selection of multiple features is useful but expensive

» Projection into (linear) subspace

» principal component analysis (PCA)

» independent component analysis (ICA)

» random indexing (RI)

1= intuition: preserve distances between data points
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Dimensionality reduction & latent dimensions

Landauer and Dumais (1997) claim that LSA dimensionality

reduction (and related PCA technique) uncovers latent
dimensions by exploiting correlations between features.

>

>

v

v

\4

Example: term-term matrix
V-0bj cooc's extracted from BNC

> targets = noun lemmas
» features = verb lemmas

feature scaling: association scores
(modified log Dice coefficient)

k = 111 nouns with f > 20
(must have non-zero row vectors)

n = 2 dimensions: buy and sell

noun buy sell
bond 028 0.77
cigarette | -0.52  0.44
dress 0.51 -1.30
freehold | -0.01 -0.08
land 1.13 154
number | -1.05 -1.02
per -0.35 -0.16
pub -0.08 -1.30
share 192  1.99
system -1.63 -0.70
60 / 91
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Dimensionality reduction & latent dimensions
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Motivating latent dimensions & subspace projection

» The latent property of being a commodity is “expressed”
through associations with several verbs: sell, buy, acquire, . ..

» Consequence: these DSM dimensions will be correlated
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Taxonomy of DSM parameters DSM parameters

Motivating latent dimensions & subspace projection

» The latent property of being a commodity is “expressed”
through associations with several verbs: sell, buy, acquire, . ..

» Consequence: these DSM dimensions will be correlated

» Identify latent dimension by looking for strong correlations
(or weaker correlations between large sets of features)

» Projection into subspace V of k < n latent dimensions
as a “noise reduction” technique = LSA
» Assumptions of this approach:

» “latent” distances in V are semantically meaningful
» other “residual” dimensions represent chance co-occurrence
patterns, often particular to the corpus underlying the DSM
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The latent “commodity” dimension
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Examples
Outline

Taxonomy of DSM parameters

Examples
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Taxonomy of DSM parameters Examples

Some well-known DSM examples
Latent Semantic Analysis (Landauer and Dumais 1997)

> term-context matrix with document context
> weighting: log term frequency and term entropy
» distance measure: cosine

» dimensionality reduction: SVD

Hyperspace Analogue to Language (Lund and Burgess 1996)

v

term-term matrix with surface context

v

structured (left/right) and distance-weighted frequency counts

v

distance measure: Minkowski metric (1 < p < 2)

v

dimensionality reduction: feature selection (high variance)
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Taxonomy of DSM parameters Examples

Some well-known DSM examples

Infomap NLP (Widdows 2004)

» term-term matrix with unstructured surface context
> weighting: none

distance measure: cosine

v

v

dimensionality reduction: SVD

Random Indexing (Karlgren and Sahlgren 2001)

» term-term matrix with unstructured surface context
> weighting: various methods
» distance measure: various methods

» dimensionality reduction: random indexing (RI)

DSM Tutorial — Part 1
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Taxonomy of DSM parameters Examples

Some well-known DSM examples

Dependency Vectors (Padé and Lapata 2007)

> term-term matrix with unstructured dependency context

v

weighting: log-likelihood ratio

» distance measure: information-theoretic (Lin 1998b)

v

dimensionality reduction: none

Distributional Memory (Baroni and Lenci 2010)

> term-term matrix with structured and unstructered
dependencies + knowledge patterns

> weighting: local-MI on type frequencies of link patterns
» distance measure: cosine

» dimensionality reduction: none
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Using DSM distances
Outline

DSM in practice
Using DSM distances
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Nearest neighbours
DSM based on verb-object relations from BNC, reduced to 100 dim. with SVD

Neighbours of dog (cosine angle):

v girl (45.5), boy (46.7), horse(47.0), wife (48.8), baby (51.9),
daughter (53.1), side (54.9), mother (55.6), boat (55.7), rest
(56.3), night (56.7), cat (56.8), son (57.0), man (58.2), place
(58.4), husband (58.5), thing (58.8), friend (59.6), ...

Neighbours of school:

ww country (49.3), church (52.1), hospital (53.1), house (54.4),
hotel (55.1), industry (57.0), company (57.0), home (57.7),
family (58.4), university (59.0), party (59.4), group (59.5),
building (59.8), market (60.3), bank (60.4), business (60.9),
area (61.4), department (61.6), club (62.7), town (63.3),
library (63.3), room (63.6), service (64.4), police (64.7), ...

DSM Tutorial — Part 1
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Nearest neighbours

bit thing
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DSM in practice Us

Semantic maps

ing DSM distances

Semantic map (V-Obj from BNC)

© |
S )
onion potato keEtIe e bird -
. . groundAnimal
< mushroom o fruitTree
S ® o chicken cup ¢ green
« banana b ° | e tool
ow| vehicle
N cat lettuce . bottle| *
o cherry « ° . ° .
~do com pen
pig lion g © o pear
° ) pineapple spoon
= hip o car .
| hcow . boat ~, teleph knife
eer: ant snail clepnone < p.encil
N ea.gle duck rocket .
S o owl motorcycl
swan . ycle hammer
I . pea(-:ock truck o
penguin ;
: chisel
ZF‘ i turtle ® helicopter * o screwdriver
L]
scissors
T T T T T
-0.4 -0.2 0.0 0.8

DSM Tutorial — Part 1

71/ 91



Using DSM distances

DSM in practice
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Semantic similarity graph (topological structure)
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Semantic similarity graph (topological structure)
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Using DSM distances
Context vectors (Schiitze 1998)

Distributional representation
only at type level

1= What is the “average”
meaning of mouse?
(computer vs. animal)
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Using DSM distances
Context vectors (Schiitze 1998)

Distributional representation
only at type level

1= What is the “average”
meaning of mouse?
(computer vs. animal)

Context vector approximates
meaning of individual token

» bag-of-words approach:
centroid of all context
words in the sentence

DSM Tutorial — Part 1
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Quantitative evaluation
Outline

DSM in practice

Quantitative evaluation
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DSM in practice Quantitative evaluation

The TOEFL synonym task

» The TOEFL dataset
» 80 items
» Target: levied

Candidates: believed, correlated, imposed, requested
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DSM in practice Quantitative evaluation

The TOEFL synonym task

» The TOEFL dataset
» 80 items
» Target: levied

Candidates: believed, correlated, imposed, requested
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DSM in practice Quantitative evaluation

The TOEFL synonym task

» The TOEFL dataset

» 80 items

» Target: levied
Candidates: believed, correlated, imposed, requested

» Target fashion
Candidates: craze, fathom, manner, ration
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DSM in practice Quantitative evaluation

The TOEFL synonym task

» The TOEFL dataset

» 80 items

» Target: levied
Candidates: believed, correlated, imposed, requested

» Target fashion
Candidates: craze, fathom, manner, ration
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DSM in practice Quantitative evaluation

The TOEFL synonym task

» The TOEFL dataset

» 80 items

» Target: levied
Candidates: believed, correlated, imposed, requested

» Target fashion
Candidates: craze, fathom, manner, ration

» DSMs and TOEFL

1. take vectors of the target (t) and of the candidates (c; ...

2. measure the distance between t and c¢;, with 1 </ <n
3. select c¢; with the shortest distance in space from t

DSM Tutorial — Part 1

© Evert/Baroni/Lenci (CC-by-sa)
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DSM in practice Quantitative evaluation

Humans vs. machines on the TOEFL task

» Average foreign test taker: 64.5%
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DSM in practice Quantitative evaluation

Humans vs. machines on the TOEFL task

» Average foreign test taker: 64.5%
» Macquarie University staff (Rapp 2004):

» Average of 5 non-natives: 86.75%
» Average of 5 natives: 97.75%
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Quantitative evaluation
Humans vs. machines on the TOEFL task

» Average foreign test taker: 64.5%
» Macquarie University staff (Rapp 2004):

>

>

Average of 5 non-natives: 86.75%
Average of 5 natives: 97.75%

» Distributional semantics

>

vV vy vy

Classic LSA (Landauer and Dumais 1997): 64.4%

Pad6 and Lapata's (2007) dependency-based model: 73.0%
Distributional memory (Baroni and Lenci 2010): 76.9%
Rapp’'s (2004) SVD-based model, lemmatized BNC: 92.5%
Bullinaria and Levy (2012) carry out aggressive parameter
optimization: 100.0%
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DSM in practice Quantitative evaluation

Semantic similarity judgments

» Rubenstein and Goodenough (1965) collected similarity
ratings for 65 noun pairs from 51 subjects on a 0—4 scale

wi wo avg. rating
car automobile 3.9
food fruit 2.7
cord smile 0.0
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DSM in practice Quantitative evaluation

Semantic similarity judgments

» Rubenstein and Goodenough (1965) collected similarity
ratings for 65 noun pairs from 51 subjects on a 0—4 scale

wi wo avg. rating
car automobile 3.9
food fruit 2.7
cord smile 0.0

» DSMs vs. Rubenstein & Goodenough
1. for each test pair (wy, w»), take vectors wy and wp
2. measure the distance (e.g. cosine) between w; and w;
3. measure (Pearson) correlation between vector distances and
R&G average judgments (Padé and Lapata 2007)
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DSM in practice Quantitative evaluation

Semantic similarity judgments: example

RGB65: British National Corpus

100

Irho| = 0.748, p = 0:0000, |r| = 0.623 .. 0.842

90

80

70

angular distance
60

50

40

30

human rating

[} [ =
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DSM in practice Quantitative evaluation

Semantic similarity judgments: results

Results on RG65 task:
» Padé and Lapata’s (2007) dependency-based model: 0.62

» Dependency-based on Web corpus (Herdagdelen et al. 2009)

» without SVD reduction: 0.69
» with SVD reduction: 0.80

» Distributional memory (Baroni and Lenci 2010): 0.82
» Salient Semantic Analysis (Hassan and Mihalcea 2011): 0.86
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Software and further information
Outline

DSM in practice

Software and further information
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DSM in practice Software and further information

Software packages

HiDEx CH++

SemanticVectors Java

S-Space Java
JoBimText Java
Gensim Python
DISSECT Python
wordspace R

re-implementation of the HAL model
(Lund and Burgess 1996)

scalable architecture based on random
indexing representation

complex object-oriented framework
UIMA / Hadoop framework

complex framework, focus on paral-
lelization and out-of-core algorithms
user-friendly, designed for research on
compositional semantics

interactive research laboratory, but
scales to real-life data sets

click on package name to open Web page

DSM Tutorial — Part 1
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http://www.psych.ualberta.ca/~westburylab/downloads/HiDEx.download.html
http://code.google.com/p/semanticvectors/
http://github.com/fozziethebeat/S-Space
http://maggie.lt.informatik.tu-darmstadt.de/jobimtext/
http://radimrehurek.com/gensim/
http://clic.cimec.unitn.it/composes/toolkit/
http://wordspace.r-forge.r-project.org/

DR\l elelaiteiy  Software and further information

Recent conferences and workshops

» 2007: CoSMo Workshop (at Context '07)

» 2008: ESSLLI Lexical Semantics Workshop & Shared Task,
Special Issue of the Italian Journal of Linguistics

» 2009: GeMS Workshop (EACL 2009), DiSCo Workshop
(CogSci 2009), ESSLLI Advanced Course on DSM

» 2010: 2nd GeMS (ACL 2010), ESSLLI Workshop on
Compositionality and DSM, DSM Tutorial (NAACL 2010),
Special Issue of JNLE on Distributional Lexical Semantics

» 2011: 2nd DiSCo (ACL 2011), 3rd GeMS (EMNLP 2011)
» 2012: DiDaS (at ICSC 2012)

> 2013: CVSC (ACL 2013), TFDS (IWCS 2013), Dagstuhl
> 2014: 2nd CVSC (at EACL 2014)

click on Workshop name to open Web page

DSM Tutorial — Part 1 84 /91


http://clic.cimec.unitn.it/marco/beyond_words/
http://wordspace.collocations.de/doku.php/workshop:esslli:start
http://wordspace.collocations.de/doku.php/workshop:esslli:task
http://linguistica.sns.it/RdL/2008.html
http://art.uniroma2.it/gems/
http://www.let.rug.nl/disco2009/
http://wordspace.collocations.de/doku.php/course:esslli2009:start
http://art.uniroma2.it/gems010/
http://clic.cimec.unitn.it/roberto/ESSLLI10-dsm-workshop/
http://clic.cimec.unitn.it/roberto/ESSLLI10-dsm-workshop/
http://naaclhlt2010.isi.edu/tutorials/t4.html
http://journals.cambridge.org/action/displayIssue?iid=7911772
http://disco2011.fzi.de
https://sites.google.com/site/geometricalmodels/
http://didas.org
https://sites.google.com/site/cvscworkshop/
http://clic.cimec.unitn.it/roberto/IWCS-TFDS2013/
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=13462
https://sites.google.com/site/cvscworkshop2014/

DSM in practice Software and further information

Further information

v

Handouts & other materials available from wordspace wiki at

http://wordspace.collocations.de/

== based on joint work with Marco Baroni and Alessandro Lenci

v

Tutorial is open source (CC), and can be downloaded from
http://r-forge.r-project.org/projects/wordspace/

v

Review paper on distributional semantics:

Turney, Peter D. and Pantel, Patrick (2010). From frequency
to meaning: Vector space models of semantics. Journal of
Artificial Intelligence Research, 37, 141-188.

v

| should be working on textbook Distributional Semantics for
Synthesis Lectures on HLT (Morgan & Claypool)

DSM Tutorial — Part 1 85 /91
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http://r-forge.r-project.org/projects/wordspace/
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