Lightweight Word Embeddings (Word2Vec) and CPU BERT
Demos

Francis Bond

What is Word2Vec?

» Goal: learn word embeddings (dense vectors) from raw text.
> Distributional idea: words that occur in similar contexts have similar vectors.

» Two classic training objectives:

» CBOW: predict the target word from surrounding context words.
» Skip-gram: predict surrounding context words from the target word.

P> Result: geometry in vector space supports similarity, clustering, and some
analogies.

How Word2Vec is trained (intuition)

» Slide a window over a corpus; generate (context, target) pairs.

» Train a small neural model to make good predictions of words from contexts (or
vice versa).

> Use tricks for efficiency:

> Negative sampling (common): discriminate true pairs from random noise pairs.
» Subsampling frequent words to reduce dominance of the, of, and, ...

» The trained weights become word vectors; similarity is often cosine similarity.

Practical note: for classroom laptops, loading a small pre-trained model is usually easier
than training on a large corpus.

Gensim: CPU-friendly embeddings

» Gensim provides efficient implementations of Word2Vec and tools for using
pre-trained vectors (KeyedVectors).
» Typical workflow:

1. install (pip install gensim)
2. load a small pre-trained model (or train a tiny one for a demo)
3. query similarity / nearest neighbors / analogies

> Keep it lightweight: use a small model (tens of MB) and CPU.

pip install gensim

Gensim: loading vectors + similarity

» You can load vectors saved in Gensim format, or in word2vec format.

» Once loaded, you can ask for nearest neighbors and cosine similarity.

from gensim.models import KeyedVectors

H*

Ezample (Gensim native format)
kv = KeyedVectors.load("vectors.kv", mmap="1")

*

*

Ezample (word2vec text format)
kv = KeyedVectors.load_word2vec_format("vectors.txzt”, binary=False)

H*

Then:
kv.most_similar("university"”, topn=10)
kv.similarity("cat"”, "dog")

®* W

Tip: For large vectors, mmap="r" keeps RAM usage down.

Compositional / analogy arithmetic (classic demo)

» The famous analogy style query:
ki;;g — man + woman =~ quéen
» In Gensim, use most_similar with positive/negative sets.

"king" - "man" + "woman" -> "queen" (often)
kv.most_similar(positive=["king", "woman"],
negative=["man"],
topn=>5)

Youll often get queen near the top (depending on model 4 vocabulary).

Hyponymy / is-a vector trick (works... sometimes)
P> People sometimes try a relation vector like:
is_an animal — dag

then apply it to a new hyponym: quéen + is_a.
> This is not a principled guarantee: hierarchies are not consistently linear in
Word2Vec space.

Build a crude "is-a" direction from one exzample pair
is_a = kv["animal"] - kv["dog"]

Apply <t to another specific term
kv.most_similar(positive=["queen", is_al], topn=10)

Sometimes youll see broader categories (monarch, royalty, person...), sometimes you wont.

Thats the teaching point.

Why antonyms are hard for Word2Vec (and friends)

» Word2Vec learns from shared contexts.

» Antonyms often occur in very similar contexts:
> hot coffee / cold coffee
» high temperature | low temperature

> So embeddings can place antonyms close together even though meanings
oppose.

» Consequence: nearest neighbors is not the same as synonyms.

Useful classroom exercise: compare nearest neighbors for a word and ask students to label each
neighbor as synonym / related / antonym / topical.

From static embeddings to contextual models

> Word2Vec gives one vector per word type.
» But many words are polysemous:
» bank (river vs. finance)
» chestnut (tree/nut vs. old chestnut = stale joke/idea)

» Contextual models (BERT-family) produce token embeddings: the vector for
bank depends on the sentence.

CPU BERT in class: small models + simple pipelines

» Hugging Face transformers runs fine on CPU for small demos.
> Use distilled models to keep it manageable:

> distilbert-base-uncased (English)
» multilingual options exist too, but are often heavier

pip install transformers torch --index-url https://download.pytorch.org/wk

from transformers import pipeline
f£ill = pipeline("fill-mask", model="distilbert-base-uncased")

On CPU its slower than GPU, but fine for short sentences.
The first time we run it, it downloads the model

~/.cache/huggingface/
hub/
models--distilbert-base-uncased/

BERT wow moment: context sensitivity

» Same word, different context = different predictions.

Same surface form, different sense-cues in context
sl = "I sat on the bank of the river and watched the water."

s2 = "I went to the bank to open a new account."

Fill-mask expects a [MASK] token; we mask a nearby word to probe context
print(£ill("I sat on the bank of the river and watched the [MASK].")[:3])
print(£ill("I went to the bank to open a new [MASK].")[:3])

Students see that the same surrounding topic drives very different completions.

Negation: a simple demo (and a warning)

» Negation is famously tricky.

» A quick classroom probe: compare predictions with vs. without not.

print (£il1("A robin is a [MASK].")[:5])
print(£ill("A robin is not a [MASK].")[:5])

Warning: masked-LM objectives do not reason logically. Sometimes the negated sentence still
suggests plausible categories (or even repeats the positive behavior). That unpredictability is
itself a useful discussion point.

Metaphor / idiom strength: double-edged . ..

» BERT often completes conventional metaphors / idioms well because it has seen
them in varied contexts.

print (fill1("His words were a double-edged [MASK].")[:5])

Often sword appears near the top. This contrasts with Word2Vec arithmetic: Word2Vec can
do some analogies, but it does not represent compositional phrase meaning the same way.

Bert demo code is in one file

» Put everything in a single script, e.g. bert_demo.py

$ python bert_demo.py

