
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lightweight Word Embeddings (Word2Vec) and CPU BERT
Demos

Francis Bond
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What is Word2Vec?

▶ Goal: learn word embeddings (dense vectors) from raw text.
▶ Distributional idea: words that occur in similar contexts have similar vectors.
▶ Two classic training objectives:

▶ CBOW: predict the target word from surrounding context words.
▶ Skip-gram: predict surrounding context words from the target word.

▶ Result: geometry in vector space supports similarity, clustering, and some
analogies.
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How Word2Vec is trained (intuition)

▶ Slide a window over a corpus; generate (context, target) pairs.
▶ Train a small neural model to make good predictions of words from contexts (or

vice versa).
▶ Use tricks for efficiency:

▶ Negative sampling (common): discriminate true pairs from random noise pairs.
▶ Subsampling frequent words to reduce dominance of the, of, and, . . .

▶ The trained weights become word vectors; similarity is often cosine similarity.

Practical note: for classroom laptops, loading a small pre-trained model is usually easier
than training on a large corpus.
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Gensim: CPU-friendly embeddings

▶ Gensim provides efficient implementations of Word2Vec and tools for using
pre-trained vectors (KeyedVectors).

▶ Typical workflow:
1. install (pip install gensim)
2. load a small pre-trained model (or train a tiny one for a demo)
3. query similarity / nearest neighbors / analogies

▶ Keep it lightweight: use a small model (tens of MB) and CPU.

pip install gensim
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Gensim: loading vectors + similarity
▶ You can load vectors saved in Gensim format, or in word2vec format.
▶ Once loaded, you can ask for nearest neighbors and cosine similarity.

from gensim.models import KeyedVectors

# Example (Gensim native format)
# kv = KeyedVectors.load("vectors.kv", mmap="r")

# Example (word2vec text format)
# kv = KeyedVectors.load_word2vec_format("vectors.txt", binary=False)

# Then:
# kv.most_similar("university", topn=10)
# kv.similarity("cat", "dog")

Tip: For large vectors, mmap="r" keeps RAM usage down.
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Compositional / analogy arithmetic (classic demo)

▶ The famous analogy style query:

⃗king − m⃗an + ⃗woman ≈ ⃗queen

▶ In Gensim, use most_similar with positive/negative sets.

# "king" - "man" + "woman" -> "queen" (often)
kv.most_similar(positive=["king", "woman"],

negative=["man"],
topn=5)

Youll often get queen near the top (depending on model + vocabulary).
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Hyponymy / is-a vector trick (works... sometimes)
▶ People sometimes try a relation vector like:

⃗is_a ≈ ⃗animal − ⃗dog

then apply it to a new hyponym: ⃗queen + ⃗is_a.
▶ This is not a principled guarantee: hierarchies are not consistently linear in

Word2Vec space.

# Build a crude "is-a" direction from one example pair
is_a = kv["animal"] - kv["dog"]

# Apply it to another specific term
kv.most_similar(positive=["queen", is_a], topn=10)

Sometimes youll see broader categories (monarch, royalty, person...), sometimes you wont.
Thats the teaching point.
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Why antonyms are hard for Word2Vec (and friends)

▶ Word2Vec learns from shared contexts.
▶ Antonyms often occur in very similar contexts:

▶ hot coffee / cold coffee
▶ high temperature / low temperature

▶ So embeddings can place antonyms close together even though meanings
oppose.

▶ Consequence: nearest neighbors is not the same as synonyms.

Useful classroom exercise: compare nearest neighbors for a word and ask students to label each
neighbor as synonym / related / antonym / topical.
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From static embeddings to contextual models

▶ Word2Vec gives one vector per word type.
▶ But many words are polysemous:

▶ bank (river vs. finance)
▶ chestnut (tree/nut vs. old chestnut = stale joke/idea)

▶ Contextual models (BERT-family) produce token embeddings: the vector for
bank depends on the sentence.
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CPU BERT in class: small models + simple pipelines
▶ Hugging Face transformers runs fine on CPU for small demos.
▶ Use distilled models to keep it manageable:

▶ distilbert-base-uncased (English)
▶ multilingual options exist too, but are often heavier

pip install transformers torch --index-url https://download.pytorch.org/whl/cpu

from transformers import pipeline
fill = pipeline("fill-mask", model="distilbert-base-uncased")

On CPU its slower than GPU, but fine for short sentences.
The first time we run it, it downloads the model

~/.cache/huggingface/
hub/

models--distilbert-base-uncased/
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BERT wow moment: context sensitivity

▶ Same word, different context ⇒ different predictions.

# Same surface form, different sense-cues in context
s1 = "I sat on the bank of the river and watched the water."
s2 = "I went to the bank to open a new account."

# Fill-mask expects a [MASK] token; we mask a nearby word to probe context.
print(fill("I sat on the bank of the river and watched the [MASK].")[:3])
print(fill("I went to the bank to open a new [MASK].")[:3])

Students see that the same surrounding topic drives very different completions.
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Negation: a simple demo (and a warning)

▶ Negation is famously tricky.
▶ A quick classroom probe: compare predictions with vs. without not.

print(fill("A robin is a [MASK].")[:5])
print(fill("A robin is not a [MASK].")[:5])

Warning: masked-LM objectives do not reason logically. Sometimes the negated sentence still
suggests plausible categories (or even repeats the positive behavior). That unpredictability is
itself a useful discussion point.
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Metaphor / idiom strength: double-edged . . .

▶ BERT often completes conventional metaphors / idioms well because it has seen
them in varied contexts.

print(fill("His words were a double-edged [MASK].")[:5])

Often sword appears near the top. This contrasts with Word2Vec arithmetic: Word2Vec can
do some analogies, but it does not represent compositional phrase meaning the same way.
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Bert demo code is in one file

▶ Put everything in a single script, e.g. bert_demo.py

$ python bert_demo.py


