
Beginner's Python
Cheat Sheet -

Testing Your Code
Why test your code?
When you write a function or a class, you can also
write tests for that code. Testing proves that your code
works as it's supposed to in the situations it's designed
to handle, and also when people use your programs in
unexpected ways. Writing tests gives you confidence
that your code will work correctly as more people
begin to use your programs. You can also add new
features to your programs and know whether or not
you've broken existing behavior by running your tests.
 A unit test verifies that one specific aspect of your
code works as it's supposed to. A test case is a
collection of unit tests which verify that your code's
behavior is correct in a wide variety of situations.
 The output in some sections has been trimmed for
space.

Testing a function: a passing test
The pytest library provides tools for testing your code. To
try it out, we’ll create a function that returns a full name. We’ll
use the function in a regular program, and then build a test
case for the function.

A function to test
Save this as full_names.py

def get_full_name(first, last):
 """Return a full name."""

 full_name = f"{first} {last}"
 return full_name.title()

Using the function
Save this as names.py

from full_names import get_full_name

janis = get_full_name('janis', 'joplin')
print(janis)

bob = get_full_name('bob', 'dylan')
print(bob)

Installing pytest
Installing pytest with pip
$ python -m pip install --user pytest

Testing a function (cont.)
Building a testcase with one unit test
To build a test case, import the function you want to test. Any
functions that begin with test_ will be run by pytest. Save this file
as test_full_names.py.

from full_names import get_full_name

def test_first_last():
 """Test names like Janis Joplin."""
 full_name = get_full_name('janis',
 'joplin')
 assert full_name == 'Janis Joplin'

Running the test
Issuing the pytest command tells pytest to run any file beginning
with test_. pytest reports on each test in the test case.
 The dot after test_full_names.py represents a single passing test.
pytest informs us that it ran 1 test in about 0.01 seconds, and that
the test passed.

$ pytest
============= test session starts =============
platform darwin -- Python 3.11.0, pytest-7.1.2
rootdir: /.../testing_your_code
collected 1 item

test_full_names.py . [100%]
============== 1 passed in 0.01s ==============

Testing a function: A failing test
Failing tests are important; they tell you that a change in the
code has affected existing behavior. When a test fails, you
need to modify the code so the existing behavior still works.

Modifying the function
We’ll modify get_full_name() so it handles middle names, but
we’ll do it in a way that breaks existing behavior.

def get_full_name(first, middle, last):
 """Return a full name."""
 full_name = f"{first} {middle} {last}"
 return full_name.title()

Using the function
from full_names import get_full_name

john = get_full_name('john', 'lee', 'hooker')
print(john)

david = get_full_name('david', 'lee', 'roth')
print(david)

A failing test (cont.)
Running the test
When you change your code, it’s important to run your existing
tests. This will tell you whether the changes you made affect existing
behavior.

$ pytest
============= test session starts =============
test_full_names_failing.py F [100%]

================== FAILURES ===================
_______________ test_first_last _______________
> full_name = get_full_name('janis',
 'joplin')
E TypeError: get_full_name() missing 1
 required positional argument: 'last'

=========== short test summary info ===========
FAILED test_full_names.py::test_first_last...

============== 1 failed in 0.04s ==============

Fixing the code
When a test fails, the code needs to be modified until the test
passes again. Don’t make the mistake of rewriting your tests to fit
your new code, otherwise your code will break for anyone who's
using it the same way it's being used in the failing test.
 Here we can make the middle name optional:

def get_full_name(first, last, middle=''):
 """Return a full name."""

 if middle:
 full_name = f"{first} {middle} {last}"
 else:
 full_name = f"{first} {last}"

 return full_name.title()

Running the test
Now the test should pass again, which means our original
functionality is still intact.

$ pytest
============= test session starts =============
test_full_names.py . [100%]

============== 1 passed in 0.01s ==============

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Adding new tests
You can add as many unit tests to a test case as you need.
To write a new test, add a new function to your test file. If the
file grows too long, you can add as many files as you need.

Testing middle names
We’ve shown that get_full_name() works for first and last names.
Let’s test that it works for middle names as well.

from full_names import get_full_name

def test_first_last():
 """Test names like Janis Joplin."""
 full_name = get_full_name('janis',
 'joplin')
 assert full_name == 'Janis Joplin'

def test_middle():
 """Test names like David Lee Roth."""
 full_name = get_full_name('david',
 'roth', 'lee')
 assert full_name == 'David Lee Roth'

Running the tests
The two dots after test_full_names.py represent two passing tests.

$ pytest
============= test session starts =============
collected 2 items
test_full_names.py .. [100%]

============== 2 passed in 0.01s ==============

A variety of assert statements
You can use assert statements in a variety of ways, to
check for the exact conditions you want to verify.

Verify that a==b, or a != b
assert a == b
assert a != b

Verify that x is True, or x is False
assert x
assert not x

Verify an item is in a list, or not in a list
assert my_item in my_list
assert my_item not in my_list

Running tests from one file
In a growing test suite, you can have multiple test files.
Sometimes you'll only want to run the tests from one file.
You can pass the name of a file, and pytest will only run the
tests in that file:

$ pytest test_names_function.py

Testing a class
Testing a class is similar to testing a function, since you’ll
mostly be testing its methods.

A class to test
Save as account.py

class Account():
 """Manage a bank account."""

 def __init__(self, balance=0):
 """Set the initial balance."""
 self.balance = balance

 def deposit(self, amount):
 """Add to the balance."""
 self.balance += amount

 def withdraw(self, amount):
 """Subtract from the balance."""
 self.balance -= amount

Building a testcase
For the first test, we’ll make sure we can start out with different initial
balances. Save this as test_accountant.py.

from account import Account

def test_initial_balance():
 """Default balance should be 0."""
 account = Account()
 assert account.balance == 0

def test_deposit():
 """Test a single deposit."""
 account = Account()
 account.deposit(100)
 assert account.balance == 100

Running the test
$ pytest
============= test session starts =============
collected 2 items
test_account.py .. [100%]

============== 2 passed in 0.01s ==============

When is it okay to modify tests?
In general you shouldn’t modify a test once it’s written. When
a test fails it usually means new code you’ve written has
broken existing functionality, and you need to modify the new
code until all existing tests pass.
 If your original requirements have changed, it may be
appropriate to modify some tests. This usually happens in
the early stages of a project when desired behavior is still
being sorted out, and no one is using your code yet.

Using fixtures
A fixture is a resource that's used in multiple tests. When the
name of a fixture function is used as an argument to a test
function, the return value of the fixture is passed to the test
function.
 When testing a class, you often have to make an instance
of the class. Fixtures let you work with just one instance.

Using fixtures to support multiple tests
The instance acc can be used in each new test.

import pytest
from account import Account

@pytest.fixture
def account():
 account = Account()
 return account

def test_initial_balance(account):
 """Default balance should be 0."""
 assert account.balance == 0

def test_deposit(account):
 """Test a single deposit."""
 account.deposit(100)
 assert account.balance == 100

def test_withdrawal(account):
 """Test a deposit followed by withdrawal."""
 account.deposit(1_000)
 account.withdraw(100)
 assert account.balance == 900

Running the tests
$ pytest
============= test session starts =============
collected 3 items
test_account.py ... [100%]

============== 3 passed in 0.01s ==============

pytest flags
pytest has some flags that can help you run your tests
efficiently, even as the number of tests in your project grows.

Stop at the first failing test
$ pytest -x

Only run tests that failed during the last test run
$ pytest --last-failed

Weekly posts about all things Python
mostlypython.substack.com

