
Beginner's Python
Cheat Sheet -
If Statements

and While Loops
What are if statements? What are while
loops?
Python's if statements allow you to examine the
current state of a program and respond appropriately
to that state. You can write a simple if statement that
checks one condition, or you can create a complex
series of statements that identify the exact conditions
you're interested in.
 while loops run as long as certain conditions
remain true. You can use while loops to let your
programs run as long as your users want them to.

Conditional Tests
A conditional test is an expression that can be evaluated
as true or false. Python uses the values True and False
to decide whether the code in an if statement should be
executed.

Checking for equality
A single equal sign assigns a value to a variable. A double equal
sign checks whether two values are equal.
 If your conditional tests aren't doing what you expect them to,
make sure you're not accidentally using a single equal sign.

>>> car = 'bmw'
>>> car == 'bmw'
True
>>> car = 'audi'
>>> car == 'bmw'
False

Ignoring case when making a comparison
>>> car = 'Audi'
>>> car.lower() == 'audi'
True

Checking for inequality
>>> topping = 'mushrooms'
>>> topping != 'anchovies'
True

Numerical comparisons
Testing numerical values is similar to testing string values.

Testing equality and inequality
>>> age = 18
>>> age == 18
True
>>> age != 18
False

Comparison operators
>>> age = 19
>>> age < 21
True
>>> age <= 21
True
>>> age > 21
False
>>> age >= 21
False

Checking multiple conditions
You can check multiple conditions at the same time. The and
operator returns True if all the conditions listed are true. The
or operator returns True if any condition is true.

Using and to check multiple conditions
>>> age_0 = 22
>>> age_1 = 18
>>> age_0 >= 21 and age_1 >= 21
False
>>> age_1 = 23
>>> age_0 >= 21 and age_1 >= 21
True

Using or to check multiple conditions
>>> age_0 = 22
>>> age_1 = 18
>>> age_0 >= 21 or age_1 >= 21
True
>>> age_0 = 18
>>> age_0 >= 21 or age_1 >= 21
False

Boolean values
A boolean value is either True or False. Variables with
boolean values are often used to keep track of certain
conditions within a program.

Simple boolean values
game_active = True
is_valid = True
can_edit = False

If statements
Several kinds of if statements exist. Your choice of which to
use depends on the number of conditions you need to test.
You can have as many elif blocks as you need, and the
else block is always optional.

Simple if statement
age = 19

if age >= 18:
 print("You're old enough to vote!")

If-else statements
age = 17

if age >= 18:
 print("You're old enough to vote!")
else:
 print("You can't vote yet.")

The if-elif-else chain
age = 12

if age < 4:
 price = 0
elif age < 18:
 price = 25
else:
 price = 40

print(f"Your cost is ${price}.")

Conditional tests with lists
You can easily test whether a certain value is in a list. You
can also test whether a list is empty before trying to loop
through the list.

Testing if a value is in a list
>>> players = ['al', 'bea', 'cyn', 'dale']
>>> 'al' in players
True
>>> 'eric' in players
False

Testing if two values are in a list
>>> 'al' in players and 'cyn' in players

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

Conditional tests with lists (cont.)
Testing if a value is not in a list
banned_users = ['ann', 'chad', 'dee']
user = 'erin'

if user not in banned_users:
 print("You can play!")

Checking if a list is empty
An empty list evaluates as False in an if statement.

players = []

if players:
 for player in players:
 print(f"Player: {player.title()}")
else:
 print("We have no players yet!")

Accepting input
You can allow your users to enter input using the input()
function. All input is initially stored as a string. If you want to
accept numerical input, you'll need to convert the input string
value to a numerical type.

Simple input
name = input("What's your name? ")
print(f"Hello, {name}.")

Accepting numerical input using int()
age = input("How old are you? ")
age = int(age)

if age >= 18:
 print("\nYou can vote!")
else:
 print("\nSorry, you can't vote yet.")

Accepting numerical input using float()
tip = input("How much do you want to tip? ")
tip = float(tip)
print(f"Tipped ${tip}.")

While loops
A while loop repeats a block of code as long as a condition
is true.

Counting to 5
current_number = 1

while current_number <= 5:
 print(current_number)
 current_number += 1

While loops (cont.)
Letting the user choose when to quit
prompt = "\nTell me something, and I'll "
prompt += "repeat it back to you."
prompt += "\nEnter 'quit' to end the program. "

message = ""
while message != 'quit':
 message = input(prompt)

 if message != 'quit':
 print(message)

Using a flag
Flags are most useful in long-running programs where code from
other parts of the program might need to end the loop.

prompt = "\nTell me something, and I'll "
prompt += "repeat it back to you."
prompt += "\nEnter 'quit' to end the program. "

active = True
while active:
 message = input(prompt)

 if message == 'quit':
 active = False
 else:
 print(message)

Using break to exit a loop
prompt = "\nWhat cities have you visited?"
prompt += "\nEnter 'quit' when you're done. "

while True:
 city = input(prompt)

 if city == 'quit':
 break
 else:
 print(f"I've been to {city}!")

Accepting input with Sublime Text
Sublime Text, and a number of other text editors can't run
programs that prompt the user for input. You can use these
editors to write programs that prompt for input, but you'll
need to run them from a terminal.

Breaking out of loops
You can use the break statement and the continue
statement with any of Python's loops. For example you can
use break to quit a for loop that's working through a list or a
dictionary. You can use continue to skip over certain items
when looping through a list or dictionary as well.

While loops (cont.)
Using continue in a loop
banned_users = ['eve', 'fred', 'gary', 'helen']

prompt = "\nAdd a player to your team."
prompt += "\nEnter 'quit' when you're done. "

players = []
while True:
 player = input(prompt)

 if player == 'quit':
 break
 elif player in banned_users:
 print(f"{player} is banned!")
 continue
 else:
 players.append(player)

print("\nYour team:")
for player in players:
 print(player)

Avoiding infinite loops
Every while loop needs a way to stop running so it won't
continue to run forever. If there's no way for the condition
to become false, the loop will never stop running. You can
usually press Ctrl-C to stop an infinite loop.

An infinite loop
while True:
 name = input("\nWho are you? ")
 print(f"Nice to meet you, {name}!")

Removing all instances of a value from a list
The remove() method removes a specific value from a
list, but it only removes the first instance of the value you
provide. You can use a while loop to remove all instances of
a particular value.

Removing all cats from a list of pets
pets = ['dog', 'cat', 'dog', 'fish', 'cat',
 'rabbit', 'cat']
print(pets)

while 'cat' in pets:
 pets.remove('cat')

print(pets)

Weekly posts about all things Python
mostlypython.substack.com

