
Beginner's Python
Cheat Sheet

Variables and Strings
Variables are used to assign labels to values. A string is a
series of characters, surrounded by single or double quotes.
Python's f-strings allow you to use variables inside strings to
build dynamic messages.

Hello world
print("Hello world!")

Hello world with a variable
msg = "Hello world!"
print(msg)

f-strings (using variables in strings)
first_name = 'albert'
last_name = 'einstein'
full_name = f"{first_name} {last_name}"
print(full_name)

Lists
A list stores a series of items in a particular order. You
access items using an index, or within a loop.

Make a list
bikes = ['trek', 'redline', 'giant']

Get the first item in a list
first_bike = bikes[0]

Get the last item in a list
last_bike = bikes[-1]

Looping through a list
for bike in bikes:
 print(bike)

Adding items to a list
bikes = []
bikes.append('trek')
bikes.append('redline')
bikes.append('giant')

Making numerical lists
squares = []
for x in range(1, 11):
 squares.append(x**2)

Lists (cont.)
List comprehensions
squares = [x**2 for x in range(1, 11)]

Slicing a list
finishers = ['sam', 'bob', 'ada', 'bea']
first_two = finishers[:2]

Copying a list
copy_of_bikes = bikes[:]

Tuples
Tuples are similar to lists, but the items in a tuple can't be
modified.

Making a tuple
dimensions = (1920, 1080)
resolutions = ('720p', '1080p', '4K')

If statements
If statements are used to test for particular conditions and
respond appropriately.

Conditional tests
equal x == 42
not equal x != 42
greater than x > 42
 or equal to x >= 42
less than x < 42
 or equal to x <= 42

Conditional tests with lists
'trek' in bikes
'surly' not in bikes

Assigning boolean values
game_active = True
can_edit = False

A simple if test
if age >= 18:
 print("You can vote!")

If-elif-else statements
if age < 4:
 ticket_price = 0
elif age < 18:
 ticket_price = 10
elif age < 65:
 ticket_price = 40
else:
 ticket_price = 15

Dictionaries
Dictionaries store connections between pieces of
information. Each item in a dictionary is a key-value pair.

A simple dictionary
alien = {'color': 'green', 'points': 5}

Accessing a value
print(f"The alien's color is {alien['color']}.")

Adding a new key-value pair
alien['x_position'] = 0

Looping through all key-value pairs
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}

for name, number in fav_numbers.items():
 print(f"{name} loves {number}.")

Looping through all keys
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}

for name in fav_numbers.keys():
 print(f"{name} loves a number.")

Looping through all the values
fav_numbers = {'eric': 7, 'ever': 4, 'erin': 47}

for number in fav_numbers.values():
 print(f"{number} is a favorite.")

User input
Your programs can prompt the user for input. All input is
stored as a string.

Prompting for a value
name = input("What's your name? ")
print(f"Hello, {name}!")

Prompting for numerical input
age = input("How old are you? ")
age = int(age)

pi = input("What's the value of pi? ")
pi = float(pi)

Python Crash Course
A Hands-on, Project-Based
Introduction to Programming
ehmatthes.github.io/pcc_3e

While loops
A while loop repeats a block of code as long as a certain
condition is true. While loops are especially useful when you
can't know ahead of time how many times a loop should run.

A simple while loop
current_value = 1
while current_value <= 5:
 print(current_value)
 current_value += 1

Letting the user choose when to quit
msg = ''
while msg != 'quit':
 msg = input("What's your message? ")

 if msg != 'quit':
 print(msg)

Functions
Functions are named blocks of code, designed to do one
specific job. Information passed to a function is called an
argument, and information received by a function is called a
parameter.

A simple function
def greet_user():
 """Display a simple greeting."""
 print("Hello!")

greet_user()

Passing an argument
def greet_user(username):
 """Display a personalized greeting."""
 print(f"Hello, {username}!")

greet_user('jesse')

Default values for parameters
def make_pizza(topping='pineapple'):
 """Make a single-topping pizza."""
 print(f"Have a {topping} pizza!")

make_pizza()
make_pizza('mushroom')

Returning a value
def add_numbers(x, y):
 """Add two numbers and return the sum."""
 return x + y

sum = add_numbers(3, 5)
print(sum)

Classes
A class defines the behavior of an object and the kind of
information an object can store. The information in a class
is stored in attributes, and functions that belong to a class
are called methods. A child class inherits the attributes and
methods from its parent class.

Creating a dog class
class Dog:
 """Represent a dog."""

 def __init__(self, name):
 """Initialize dog object."""
 self.name = name

 def sit(self):
 """Simulate sitting."""
 print(f"{self.name} is sitting.")

my_dog = Dog('Peso')

print(f"{my_dog.name} is a great dog!")
my_dog.sit()

Inheritance
class SARDog(Dog):
 """Represent a search dog."""

 def __init__(self, name):
 """Initialize the sardog."""
 super().__init__(name)

 def search(self):
 """Simulate searching."""
 print(f"{self.name} is searching.")

my_dog = SARDog('Willie')

print(f"{my_dog.name} is a search dog.")
my_dog.sit()
my_dog.search()

Infinite Skills
If you had infinite programming skills, what would you build?

As you're learning to program, it's helpful to think
about the real-world projects you'd like to create. It's a
good habit to keep an "ideas" notebook that you can
refer to whenever you want to start a new project.
 If you haven't done so already, take a few minutes
and describe three projects you'd like to create. As
you're learning you can write small programs that
relate to these ideas, so you can get practice writing
code relevant to topics you're interested in.

Working with files
Your programs can read from files and write to files.
The pathlib library makes it easier to work with files and
directories. Once you have a path defined, you can work
with the read_text() and write_text() methods.

Reading the contents of a file
The read_text() method reads in the entire contents of a file. You
can then split the text into a list of individual lines, and then process
each line as you need to.

from pathlib import Path

path = Path('siddhartha.txt')
contents = path.read_text()
lines = contents.splitlines()

for line in lines:
 print(line)

Writing to a file
path = Path('journal.txt')

msg = "I love programming.")
path.write_text(msg)

Exceptions
Exceptions help you respond appropriately to errors that are
likely to occur. You place code that might cause an error in
the try block. Code that should run in response to an error
goes in the except block. Code that should run only if the try
block was successful goes in the else block.

Catching an exception
prompt = "How many tickets do you need? "
num_tickets = input(prompt)

try:
 num_tickets = int(num_tickets)
except ValueError:
 print("Please try again.")
else:
 print("Your tickets are printing.")

Zen of Python
Simple is better than complex

If you have a choice between a simple and a complex
solution, and both work, use the simple solution. Your
code will be easier to maintain, and it will be easier
for you and others to build on that code later on.

Weekly posts about all things Python
mostlypython.substack.com

