
LAC: Language and the Computer
Python for non-Programmers

Variables and Simple Data Types

Francis Bond
Division of Asian Studies

Palacký University Olomouc
bond@ieee.org

September 26, 2024

LAC

Variables

LAC 1

Naming and Using Variables

ã Variable names can contain only letters, numbers, and underscores
They cannot start with a number

ã Spaces are not allowed in variable names

ã Avoid using Python keywords and function names as variable names

ã Variable names should be short but descriptive.

â name is better than n
â student name is better than s n
â name length is better length of persons name

ã Be careful when using the lowercase letter l and the uppercase letter O
because they could be confused with the numbers 1 and 0.

LAC 2

Avoiding Name Errors When Using Variables

Everyone mistypes names all the time! Get used to it.

LAC 3

Variables Are Labels

They refer to a space in the computers memory.

LAC 4

Strings

LAC 5

Changing Case in a String with Methods

>>> name = "ada lovelace"
>>> print(name.title())
Ada Lovelace
>>> print(name.upper())
ADA LOVELACE
>>> print(name.lower())
ada lovelace

LAC 6

Using Variables in Strings

>>> name = "ada lovelace"
>>> print(f"I respect {name.title()}.")

I respect Ada Lovelace.

LAC 7

Adding Whitespace to Strings with Tabs or Newlines

tab = ’\t’
newline = ’\n’

LAC 8

Stripping Whitespace

>>> favorite_language = ’python ’
>>> favorite_language = favorite_language.rstrip()
>>> favorite_language
’python’

LAC 9

Removing Prefixes

>>> nostarch_url = ’https://nostarch.com’
>>> nostarch_url.removeprefix(’https://’)
’nostarch.com’

LAC 10

Avoiding Syntax Errors with Strings

If you need to have a single or double quote in your string, use the other
one to construct it:

str1 = "python’s strings"
str2 = ’I said "Hi!"’

If you must use both, then you can either escape the string with a ’ór use
three quotes:

str3 = """Trust fund, 6’5", blue eyes"""
str4 = ’’’Trust fund, 6’5", blue eyes’’’
str5 = "Trust fund, 6’5\", blue eyes"
str6 = ’Trust fund, 6\’5", blue eyes’

LAC 11

Using three quotes also allows multi-line strings:

"""
I’m looking for a man in finance
Trust fund, 6’5", blue eyes
Finance, trust fund, 6’5", blue eyes
Finance, trust fund, 6’5", blue eyes
Finance, trust fund, 6’5"
"""

LAC 12

Numbers

LAC 13

Integers

LAC 14

Floats

For real numbers — stored as binary, so sometimes weird rounding erros

LAC 15

Integers and Floats

Integers are more precise, floats are more flexible

LAC 16

Underscores in Numbers

These two are the same

10_000_000 = 10000000

But the first is easier for people read!

LAC 17

Comments

LAC 18

How Do You Write Comments?

this is a comment

LAC 19

What Kinds of Comments Should You Write?

ã It is easier to write code than to read it

ã So when you write code, you should make it easier to understand

ã Future you will thank you!

When you’re deciding whether to write a comment, ask yourself if you
had to consider several approaches before coming up with a reasonable
way to make something work; if so, write a comment about your solution.
It’s much easier to delete extra comments later than to go back and write
com- ments for a sparsely commented program. (p30)

LAC 20

The Zen of Python

LAC 21

Multiple Assignment

This can help shorten your programs and make them easier to read

x, y = 1, -2

LAC 22

Constants

The tradition is to write these as in all caps

THRESHOLD = .05

LAC 23

Philosophy

>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.

LAC 24

Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one

--obvious way to do it.
Although that way may not be obvious at first

unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain,

it’s a bad idea.
If the implementation is easy to explain,

it may be a good idea.
Namespaces are one honking great idea

-- let’s do more of those!

LAC 25

Acknowledgements

ã This is basically a summary of Python Crash Course 3rd Edition, Chapter
2 by Eric Matthes (2023)
ISBN-13: 978-1-7185-0270-3 (print)
ISBN-13: 978-1-7185-0271-0 (ebook)

LAC 26

