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nTowards Systematic Grammar Pro�lingTest Suite Technology Ten Years After�Stephan Oepen Daniel P. FlickingerSaarbr�ucken University CSLI StanfordPostfach 151140 Ventura Hall66041 Saarbr�ucken (Germany) Stanford, CA 94305 (USA)oe@coli.uni-sb.de dan@csli.stanford.eduAbstractAn experiment with recent test suite and gram-mar (engineering) resources is outlined: a crit-ical assessment of the EU-funded tsnlp (TestSuites for Natural Language Processing) packageas a diagnostic and benchmarking facility for adistributed (multi-site) large-scale hpsg grammarengineering e�ort. This paper argues for a gen-eralized, systematic, and fully automated testingand diagnosis facility as an integral part of thelinguistic engineering cycle and gives a practicalassessment of existing resources; both a 
exiblemethodology and tools for competence and per-formance pro�ling are presented. By compari-son to earlier evaluation work as re
ected in theHewlett-Packard test suite data, released exactlyten years before tsnlp, it is judged where test-suite-based evaluation has improved (and wherenot) over time.1 Motivation[...] the study and optimisation ofuni�cation-based parsing must rely on empir-ical data until complexity theory can moreaccurately predict the practical behaviour ofsuch parsers. [...] It seems likely that imple-mentational decisions and optimisations basedon subtle properties of speci�c grammars can[...] be more important than worst-case com-plexity. [Carroll (1994)]Contemporary lexicalized constraint-basedgrammars (e.g. within the hpsg framework) withwide grammatical and lexical coverage exhibit im-mense conceptual and computational complexity;as the grammatical framework aims to eliminateredundancy and factor out generalizations, the in-teraction of lexicon and phrase structure apparatuscan be subtle and make it hard to predict how evenmodest changes to the grammar a�ect system be-haviour. Additionally, in a distributed grammarengineering setup (i.e. for a project where several�Part of the research reported presently wasfunded by the German National Science Founda-tion (DFG) within the Special Research Divison 378(Resource-Adaptive Cognitive Processes) project B4(perform) and by the German Federal Ministry of Ed-ucation, Science, Research, and Technology (BMBF)in the framework of the VerbMobil project under grantFKZ:01IV7024.

people or even sites contribute to a single gram-matical resource) it becomes necessary to assessthe impact of individual contributions, regularlyevaluate the quality of the overall grammar, andcompare it to previous versions.Besides concise coverage (i.e. competence) judg-ments, in most application scenarios e�ciency andresource consumption play an increasingly impor-tant role; hence, processing components typicallyprovide a (potentially) large inventory of controlparameters and preference settings. When tuningthe analysis component to improve system perfor-mance, grammar writers often rely on introspec-tion, knowledge of the grammar, and personal ex-perience; yet, without systematic pro�ling and per-formance analysis, processor optimization amountsto guessing parameter settings and constant ex-perimentation. In general, given the similarity insetup (parsing with large-scale uni�cation gram-mars), it is to be expected that the observationsof Carroll (1994) (see above) hold for hpsg-typesystems too.2 Background: Test Suites in the Contextof Multi-Site Grammar EngineeringDespite the growing variety of approaches to NLP,the development of computational grammars stillis a prerequisite for NLP systems that rely on (or atleast incorporate) what is often called deep (or full)linguistic analysis. To allow developers to achievethe grammatical coverage required for most real-istic application contexts, substantial investmentsinto grammar engineering methodology and toolshave been made; hence, for most of the contem-porary grammatical frameworks in computationallinguistics, there is a (sometimes large) number ofdevelopment environments to choose from.At the same time, the improved methodologyand strict formalization, declarativity, and modu-larity of grammatical resources facilitate the dis-tribution of development across several grammarwriters and sometimes even sites. While in thepast (e.g. for purely rule-based systems) grammarsoften were developed and maintained by a sin-gle person over years or decades and ultimatelyconnected in life cycle to that one developer (seeErbach and Uszkoreit (1990)), it is now more fre-



quently possible to view parts of a grammatical re-source as (mostly) independent modules that canbe engineered by separate people. This, obviously,not only holds the potential to shorten develop-ment time but at the same time can greatly add tothe transparency and reusability of the resultingresource.Yet, it seems, comparatively little e�ort has beenput into systematic, let alone comparable, diagnos-tic and pro�ling technology, such that the practicalevaluation of processors (for analysis as for gener-ation components) remains an open issue. Andalthough the paradigm shift in grammar develop-ment outlined above creates a number of both the-oretical and practical challenges for quality assess-ment, most grammar writing initiatives lack ap-propriate methodology, test data, and tools to in-tegrate regular, systematic, and in-depth pro�lingof both grammatical competence and system per-formance into the engineering cycle.While corpus-driven e�orts along the parse-val lines (see Black et al. (1991)) typically fo-cus on quantitative system comparison and atbest give a coarse-grained analysis of systemperformance, test suites (i.e. systematic collec-tions of arti�cially constructed and manuallyannotated reference data) have long been ac-knowledged as suitable for �ne-grained diagnosis,progress evaluation and benchmarking (see e.g.Flickinger et al. (1987), Nerbonne et al. (1993),and Sparck Jones and Galliers (1995)), most ofthe available data sets follow the traditional designas 
at text �les listing test sentences annotatedwith, if at all, grammaticality judgements plus,in some cases, informal section headings groupingsets of sentences according to linguistic phenomena(or sometimes application-speci�c criteria). Lack-ing internal structure and annotations, these testsuites do not allow developers to (automatically)classify, present, and interprete evaluation resultsfrom various perspectives, which, it is argued, isa crucial property of systematic competence andperformance pro�ling.The following introductory sections (i) outlinean ongoing e�ort on distributed, multi-site hpsggrammar engineering with (ii) its speci�c desider-ata for quality assessment and (iii) summarizea novel test suite package that recently becamepublicly available from the tsnlp project. Sec-tion 3 then reports on a wealth of empirical results(in considerable detail) gained from experimentingwith the tsnlp package in a practical evaluationenvironment over a period of about one year. Fromthis perspective section 4 can be seen as a con-trol experiment that relates the experiences withtsnlp to those obtained from adapting the testdata of the ten-year-old Hewlett-Packard (hp) testsuite (which had in
uenced the tsnlp developersin many respects). As technology building was an

important aspect within the tsnlp project, sec-tion 5 gives a critical assessment of the quality ofthe tools available and, thus, leads into a conclud-ing discussion that summarizes a number of recom-mendations to both test suite developers and usersbuilding on the experiences reported here.2.1 The erg Distributed GrammarDevelopment E�ortThe English Resource Grammar (erg) projectis a consortium of research groups1 working withinthe hpsg (Pollard and Sag (1994)) framework;the consortium was initiated and is coordinated atCSLI Stanford.Research and implementation both at CSLI andat collaborating sites include work on morphol-ogy, lexicon, syntax, and semantics, along withthe necessary processing and analysis tools neededin large-scale grammar engineering. The ultimategoal of the consortium is to produce a multi-purpose broad-coverage, precise, and reusable com-putational grammar of English and to enable theexchange of NL software development tools andimplementations of English grammar fragments,thereby enhancing the e�ectiveness of each groupin doing its own focused research. Most of the de-velopment is carried out within the page (Plat-form for Advanced Grammar Engineering)2 en-vironment but some consortium members pursuework on proprietary software systems in parallel.As the actual grammar development is (at leastin part) distributed among several sites, the projecthas established the following integration strategy:� new versions of the erg grammar are released(at least) twice a year;� throughout a six-month development period con-sortiummembers submit contributions to the co-ordinator;� acting as a benevolent csar, the coordinator ap-proves and incorporates changes;� the decisions made by the coordinator are re-viewed by an advisory board of member institu-tions;1See `http://hpsg.stanford.edu/' for details, on-line access to the current system, and an up-to-datelist of consortium members.2The page system developed and maintained at theGerman National Research Center for Arti�cial Intelli-gence (DFKI GmbH) is an advanced NLP core enginethat especially facilitates the development of grammat-ical resources building on typed feature logics (e.g. forhpsg-style frameworks).page comprises a fair number of various (and oftenindependent) modules and linguistic resources that al-low for a 
exible con�guration according to di�erentuser requirements (see Uszkoreit et al. (1994) for de-tails), of which primarily the uni�er, type system, andparser play a role in the pro�ling experiments discussedpresently.



� a new grammar release is issued by the coordi-nator.For its �rst two years working on the erg gram-mar, the consortium has mostly carried throughthe methodology and release schedule as expected;yet, the bulk of development and integration stillresides with the coordinator.2.2 erg Evaluation RequirementsObviously, in the evaluation of contributions andthe preparation of new releases a well-de�ned qual-ity metric is required, to allow both the contribu-tors and the coordinator to (i) assess individualcontributions and (ii) judge how changes to mod-ules interact with the grammar as a whole; here,the three most relevant dimensions in evaluationare (i) grammatical coverage, (ii) overgeneration(or accuracy) of analyses3, and (iii) system (i.e.primarily analysis) performance.A coarse-grained three-level evaluation alongthose dimensions, however, is clearly insu�cientfor the erg contributors and especially the coordi-nator in working towards a new grammar release.Instead, in both overall progress evaluation and�ner-grained diagnostics developers need a largedegree of 
exibility to view and analyze evaluationresults from various perspectives. In general, eval-uators want to classify (aggregate) and summarizedata into meaningful subsets (which may or maynot correspond to what is taken to mean a mod-ule in the underlying grammar) and thus 
exiblyadjust the granularity in evaluation to their actualneeds.In contrast, traditional test suite approaches(like the still widely used hp test suite that willbe taken as a reference point for comparisonpresently) typically only foresaw either the inspec-tion of processing results on an individual (peritem) level or the production of overall (average)results for a full test suite run. Without furtherinformation (i.e. linguistic or extra-linguistic dis-tinctions) explicitly represented in the test suite,this restriction is impossible to overcome.A �nal observation that, again, suggests a moreeloborate evaluation setup is that in any typicalNLP development context the engineering environ-ment and processing components will change si-multaneously to the grammar writing. Thus, notonly will changes to the grammar itself potentiallyhave a strong impact on system performance, butso too will changes made to system parameters orthe actual software (e.g. a new version of the gram-mar development platform released by the external3In information extraction terminology, the cover-age and overgeneration dimensions correspond to thefamiliar recall vs. precision distinction. For the presentdiscussion, both are often subsumed under the termgrammatical competence and contrasted with the thirddimension: system performance.

developer). Progress evaluation in such a setup isof an inherently iterative nature and has to controlfor numerous, often orthogonal, parameters.2.3 tsnlp | Test Suites for NaturalLanguage ProcessingRecently, the Test Suites for Natural LanguageProcessing (tsnlp)4 project has delivered a multi-purpose and multi-language test suite package ad-dressing the increasing demand in the NLP com-munity (among developers and users alike) for ref-erence data to evaluate various types of languagetechnology applications.The project produced the methodology and tech-nology for the development and application of sys-tematic test suites (see Lehmann et al. (1996b)and Oepen et al. (1997)). Substantial test suitesof some 4500 items each were built for English,French, and German covering central syntacticphenomena. Test items are annotated using a richannotation schema that is designed to be mostlyneutral to linguistic theories and speci�c types ofapplications.In comparison to �rst generation (or traditional)test suites, the tsnlp approach is novel in that theconcept of a test suite as a monolithic set of testitems has been abandoned in favour of a notionof a complex and highly structured test suite; thetsnlp test suites are implemented as a database inwhich test items are stored together with a rich in-ventory of associated linguistic and non-linguisticannotations. Thus, the test suite database servesas a virtual (or meta) test suite that providesthe means to extract the relevant subset of thetest data suitable for a speci�c task. Since thedatabase concept allows the storage of application-speci�c coverage and performance measures as aprecise and contiguous record of how various sys-tem and grammar versions (at various times) per-form, it easily facilitates progress evaluation, re-gression testing, and comparative report genera-tion.3 A Case Study: tsnlp and ergFrom this brief summary of the tsnlp test suitepackage it already follows that in its design itshould have the potential to address most, if notall, of the evaluation requirements in the erg |and any similar | (distributed) grammar engineer-ing setup. However, as tsnlp was designed as amulti-purpose tool (i.e. useful in di�erent evalua-tion scenarios with di�erent application types), itseemed interesting to evaluate its adequacy accord-ing to the speci�c needs found in this one particularenvironment. Only if the test data and tools prove
exible and (easily) adaptable, can the approach4Most of the project results and informa-tion on the consortium can be obtained from`http://tsnlp.dfki.uni-sb.de/tsnlp/'.



aiming for general, reusable test suite packages befully validated.3.1 Setup: Connecting tsnlp to the pageGrammar Development SystemTo take full advantage of the tsnlp virtual testsuite concept and to allow for regular and 
exi-ble pro�ling and experimentation, the test suitedatabase (tsdb) has been seamlessly integrated intothe page system; through a bidirectional interfacethe development platform is given full access totsdb, thus enabling it to retrieve and store arbi-trary data. For storing application- or user-speci�cdata, the tsnlp data model foresees what is calleda user & application pro�le, i.e. the ability to addnew relations to the database in order to accom-modate, for instance, additional annotations, spec-i�cations of expected output, and any number ofresult and performance metrics that the applica-tion wants recorded (see below for details).The close coupling of the grammar engineeringsystem and test suite apparatus adds (among oth-ers) the following functionality to page:(i) interactive retrieval and browsing of tsnlp testitems using a simpli�ed SQL-type query lan-guage;(ii) listing of test suite vocabulary (and frequency ofoccurrence), expansion of necessary lexicon en-tries, and checking for missing items;(iii) selection of (a subset of the available) test data,fail-tolerant batch processing, and storage ofperformance measures (�gure 1 gives an excerptfrom the resulting log); and(iv) report generation summarizing grammar cover-age and system performance in (simple) descrip-tive statistics (all �gures used in this paper wereautomatically generated from this machinery).While batch processing a selection from the testdata, a large number of system-speci�c perfor-mance parameters are recorded in the database (as-sociated with the respective test item and currenttest suite run); besides those shown in �gure 1,these include: the total and per reading numbersof succeeding, failed, and �ltered parser tasks (seesection 3.5), and the time used, resulting featurestructure size, derivation (tree), and semantic for-mula for each reading obtained.Thus, the database not only serves as a data poolfor various 
exible views (report generation andstatistical analysis) on the results obtained from asingle test suite run, but just as well as a contiguoushistory of system development that, at any time,allows the assessment of previous competence andperformance including comparative progress eval-uation.

Regarding test suite vocabulary, the erg lexiconwas extended to incorporate the necessary lexicalmaterial used in tsnlp (some 580 word forms).Given the strict limitation in lexical variation inthe test suite and the overall glass box evalua-tion scenario, it turned out simpler to adapt theapplication (i.e. the erg lexicon) rather than thetest suite because (i) tsnlp provides no supportfor automated lexical replacement to customize thetest data (and customization in general remains anopen problem) and (ii) the erg consortium aimsfor a small but representative core lexicon anyway,to distribute it as part of the grammar (while largerlexicons developed at individual sites can in prin-ciple preserve a proprietary status). In identifyingand adding missing lexical entries, the tsdb to pageintegration already proved useful, in that it allowedthe grammar writer to extract the necessary vo-cabulary from the test suite, feed it word by wordthrough morphological and lexical processing, andobtain a list of lexical gaps.Some of the phenomena in the tsnlp test suite(see below), however, inherently make referenceto lexical properties: testing complementation pat-terns, for example, in an hpsg-type setup mostlyamounts to testing the lexicon. And although thedistinction between lexical and non-lexical compe-tence in the grammar is somewhat blurred, the pri-mary use of the tsnlp test suites is not seen inevaluating lexical coverage; thus, especially whenadding lexicon entries for verbal complementa-tion patterns (the tsnlp C Complementation phe-nomenon), the grammar writers were allowed toinspect full test items (i.e. the context in which aparticular word form occurs) to determine whichusage of some verb was actually intended. Aim-ing for in-depth diagnosis and progress evaluationof how grammatical competence and system per-formance evolve rather than a competitive com-parison among several applications, this approachseems to have no negative impact on the resultsobtained.3.2 Grammatical CoverageThe linguistic coverage of a grammar is de-scribed within the tsnlp framework in terms ofclasses of phenenomena, with a top-level divisioninto ten or so broad categories which can be furtherre�ned to arbitrary levels of precision. While theclasses chosen do not of course exhaustively coverthe range of important phenomena for a language,they will serve well enough for this study, to illus-trate how a grammar developer can extract use-ful generalizations about the current state of thegrammar from test data that facilitates the anal-ysis in various degrees of granularity. In Figure 2the ten categories chosen for the English tsnlptest items are shown with data from a run of theerg grammar in October 1997, and include results
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(22290101) `She arranges with him to work .' [0] --- 1 (2.0|0.4:1.7 s) <24:223> (11.8M) [0].(22290102) `He is arranged with to work .' [0] (1 gc);(22290102) `He is arranged with to work .' =[0] --- (4.0:1.0|3.5 s) <47:306> (17.2M) [=1].(22290103) `He is arranged with by her to work .' [0] --- (5.5:1.0|4.7 s) <52:485> (27.0M) [0].(22290104) `*To work is arranged with him .' [0] --- (4.2:0.7|3.7 s) <47:336> (19.9M) [0].(22290105) `*To work is arranged with him by him .' [0] --- (13.0:6.5|12.2 s) <51:596> (36.7M) [0].(22290106) `*It is arranged with him to work .' [0] --- 7 (6.7:0.9|0.9:5.9 s) <49:627> (36.4M) [0].(22290107) `It is arranged with him by him to work .' [0] --- 15 (23.8:12.6|1.0:20.6 s) <53:1199> (70.5M) [0].(22300101) `He considers him a competitor .' [0] --- 1 (0.6|0.1:0.4 s) <9:82> (4.3M) [0].(22300102) `He is considered a competitor .' [0] --- 1 (2.5|0.8:2.0 s) <32:257> (14.8M) [0].(22300103) `He is considered a competitor by him .' [0] --- 3 (5.7|1.4:5.2 s) <36:559> (32.7M) [0].(22300104) `*A competitor is him considered .' [0] --- (1.5|1.1 s) <32:178> (10.3M) [0].(22300105) `*A competitor is him considered by him .' [0] (1 gc);(22300105) `*A competitor is him considered by him .' =[0] --- (4.0:0.9|3.5 s) <36:334> (20.4M) [=1].(22310101) `He considers him as a competitor .' [0] --- 3 (1.3|0.2:1.0 s) <13:174> (9.0M) [0].(22310102) `He is considered as a competitor .' [0] --- 4 (5.5:1.2|0.5:5.0 s) <36:461> (26.7M) [0].(22310103) `He is considered as a competitor by him .' [0] (1 gc);(22310103) `He is considered as a competitor by him .' =[0] --- 14 (16.9:2.8|0.8:14.7 s) <40:1436> (84.9M) [=1].(22320104) `*Good is found the building .' [0] --- (1.7|1.3 s) <32:152> (9.1M) [0].(22320105) `*Good is found the building by him .' [0] --- (6.9:3.7|6.0 s) <36:280> (17.2M) [0].Figure 1: Snapshot from batch processing tsnlp test items. The log format aims to give a compact summary ofsome of the information gathered; besides the input string and an upper limit for chart edges (given in squarebrackets if available) the information following the triple dash is: the number of readings obtained, the time used to�nd the �rst reading and overall (exhaustive search) processing time (in parentheses) the number of lexical itemsinvolved and total number of edges in the chart (angle brackets), the amount of memory used, and the number of(global) garbage collections while parsing (square brackets); a leading `=' sign indicates that the garbage collectorwas explicitly called before parsing this item which can either be triggered when reparsing an item because of aprior garbage collection during the parse process or by an explicit speci�cation in the database.
total positive word lexical parser total overallPhenomenon items items string items analyses results coverage] ] � � � ] %S Types 175 75 4.55 20.65 1.24 72 96.0C Agreement 123 68 4.79 14.94 3.28 54 79.4C Complementation 1011 148 5.07 15.41 2.44 124 83.8C Diathesis-Active 57 54 5.17 16.33 2.09 44 81.5C Diathesis-Passive 220 99 7.00 33.67 4.47 53 53.5C Tense-Aspect-Modality 196 157 4.51 21.14 1.53 133 84.7C Negation 418 289 5.23 27.63 4.64 224 77.5NP Agreement 1196 201 2.51 5.12 1.11 118 58.7NP Modi�cation 782 300 6.28 14.06 1.40 244 81.3NP Coordination 333 147 4.32 9.63 2.92 109 74.1Total 4511 1538 4.96 17.57 2.49 1175 76.4Figure 2: erg Coverage Pro�le as of oct-97. Columns are (from left to right): tsnlp phenomenon name, totalnumber of test items, number of grammatical test items, average test item length, average number of lexicalentries per test item, average number of readings per test item, total number of test items successfully parsed,percentage of grammatical items parsed. Comparing columns 4 and 5 provides a measure of lexical ambiguity,while column 6 indicates syntactic ambiguity. For example, passive test items exhibit signi�cant lexical ambiguitybecause of multiple lexical entries for the copula and the passive participle; the latter also contributes to thehigher measure of syntactic ambiguity for passives.



on examples testing sentence types, several clausalproperties including agreement, verb complemen-tation, some diathesis, tense and aspect, and nega-tion, as well as some NP-internal properties includ-ing agreement, modi�cation, and coordination (seeLehmann et al. (1996a) for a precise account ofthe phenomena classi�cation used in tsnlp).The test results summarized in Figure 2 show,for each phenomenon type, the total number of testitems available, the number of grammatical items,the average number of words in each example, theaverage number of lexical items retrieved, the av-erage number of distinct analyses obtained, thetotal number of grammatical examples that weresuccessfully parsed, and the percentage of gram-matical examples parsed. The criteria for decidingthat a parse was successful can of course be com-plex, but for this table we merely record whetheror not at least one parse was found for the givenitem. More informative metrics might record thecorrectness of labeled bracketings or the semanticrepresentations computed, but these require moredetailed annotations that are not yet available forthe full suite. The lack of these annotations canquickly give rise to misleading results in a sum-mary like that in Figure 2; for example, a grammarmight completely lack an analysis of passives witha by-phrase, yet still provide a successful parse forsuch examples by treating the by-phrase as a sim-ple locative. Such a lack of coverage might be visi-ble in the record of the average number of analysesfound, but will not be re
ected in the percentagescore for overall coverage at present. A more �ne-grained classi�cation of phenomena would also helpto reveal that the relatively lower score on coverageof passives is due in large part to two inadequaciesin the current grammar: a lack of an analysis im-plemented for pseudopassives, and an overly �xedordering constraint on optional by-phrases relativeto modi�er phrases within the VP; besides, someof the valency frames used in constructing passiveexamples are (still) missing from the erg lexicon(see below).More generally, even though the test items weredesigned with the intention of excluding the pres-ence of irrelevant analyses, this is di�cult to guar-antee for a wide-coverage grammar, and indeedmany of the test items do admit of what areclearly unanticipated analyses. Obviously, an it-erative process of re�nement of the test suite isdesired, where the grammar developer discoverstest items that show unintended ambiguity, andreplaces those with more carefully chosen exam-ples. An alternative approach would be to anno-tate the overly ambiguous examples as they areidenti�ed, marking certain analyses as irrelevant.Some systematic unwanted analyses might also beeliminated by imposing phenomena-wide restric-tions, such as an injunction that for the comple-

mentation and diathesis examples, all PPs are tobe taken only as complements, thus eliminating theunwanted analysis of passive by-phrases as modi-�ers for those test items.In general, the ability to break down a com-plete test run into smaller units, e.g. subsets ofthe test items corresponding to the tsnlp phenom-ena classi�cation (or other aggregation schemes),often allowed the developers to spot unexpectedbehaviour within one class and then use the testsuite database for further inspection of smaller ag-gregates or individual test items.3.3 OvergenerationThe converse of measuring successful analysesfor grammatical examples is to gather metrics onovergeneration, where the parser is not restrictiveenough to exclude true ungrammatical examples.Here again, a rough measure of the lack of precisioncan be computed simply by seeing what percentageof the ungrammatical test items are assigned atleast one successful analysis.Like the metrics for positive examples, however,this kind of measure can be misleading, since itobscures several sources of confusion. First, as wesaw with the grammatical examples above, it isdi�cult for the test suite developer to ensure thatthe ungrammatical item will not receive some kindof parse from the system, suggesting again that aniterative tuning process for the test suite itself willbe a necessary part of the regular use of such tech-nology in grammar development. A second sourceof confusion in measuring overgeneration with thecoarse classi�cations we have adopted here comesfrom the lack of a notion of prerequisite proper-ties in the test item speci�cations. For example,the numbers in Figure 3 show that in the October1997 version of the erg grammar, negation scoresvery well in not allowing any overgeneration at all,but an examination of the relevant items showsthat the ungrammatical ones all test just one sin-gle property: the not must not appear before the�nite verb that it negates. A similar kind of con-fusion re
ected in the numbers in Figure 3 sup-ports the idea that prerequisite properties shouldbe identi�ed for each test item, so the classi�ca-tion of a failure can be correctly assigned to theright phenomena. For example, NP Modi�cationin Figure 3 shows massive overgeneration by thegrammar, but a look at the individual test itemsshows that almost all of the 400 or so ungrammat-ical examples are admitted by the grammar due toa single 
aw: the relative pronouns who and thatare wrongly allowed to appear in pied piping rel-ative clauses as in `the road on that she traveled.'(in contrast to `the road that she traveled on.') Ifthese NP Modi�cation examples had been anno-tated to require that lexical complementation prop-erties must �rst be satisi�ed, then the failure of the



total negative word lexical parser total overallPhenomenon items items string items analyses results coverage] ] � � � ] %S Types 175 95 4.75 18.17 1.22 49 51.6C Agreement 123 50 4.42 14.06 2.43 7 14.0C Complementation 1011 705 4.50 14.60 1.91 70 9.9C Diathesis-Active 57 2 8.50 23.50 5.00 2 100.0C Diathesis-Passive 220 111 6.59 33.86 2.83 18 16.2C Tense-Aspect-Modality 196 38 4.08 21.21 5.25 28 73.7C Negation 418 129 5.47 23.90 0.00 0 0.0NP Agreement 1196 928 2.95 5.85 1.09 131 14.1NP Modi�cation 782 482 6.51 14.68 1.66 412 85.5NP Coordination 333 180 4.51 10.14 1.70 63 35.0Total 4511 2720 4.46 12.77 1.73 780 28.7Figure 3: erg Overgeneration Pro�le as of oct-97. The columns have the same meaning as in Figure 2 exceptfor the di�erence in the underlying selection from the tsnlp test data: column three gives the number of testitems marked as ungrammatical; hence, column eight is to be interpreted as coverage of illformed examples,i.e. overgeneration. In general, the ungrammatical test items are somewhat shorter (because the derivation ofungrammatical examples often builds on deletion of an obligatory element) and exhibit substantially less lexicaland structural ambiguity.
oct-96 oct-97Phenomenon lexical parser in out lexical parser in out� � % % � � % %S Types 12.50 2.16 78.7 40.0 19.63 1.23 96.0 51.6C Agreement 12.15 1.33 58.8 10.0 14.75 3.25 79.4 14.0C Complementation 10.85 2.19 62.2 12.1 14.00 1.90 83.8 9.9C Diathesis-Active 12.26 2.56 66.7 0.0 16.81 2.26 81.5 100.0C Diathesis-Passive 24.21 2.87 25.3 8.1 33.57 4.14 53.5 16.2C Tense-Aspect-Modality 12.01 1.57 66.9 73.7 21.11 2.17 84.7 73.7C Negation 17.90 2.12 74.7 0.0 26.48 4.64 77.5 0.0NP Agreement 4.48 1.06 47.8 14.8 5.84 1.09 58.7 14.1NP Modi�cation 12.63 1.58 75.7 82.0 14.44 1.56 81.3 85.5NP Coordination 6.63 1.72 74.1 15.0 9.90 2.49 74.1 35.0Total 10.63 1.75 65.3 26.6 14.31 2.15 76.4 28.7Figure 4: erg Competence Progress Pro�le comparing oct-96 to oct-97. The contrastive view summarizeskey characteristics from both the coverage and overgeneration pro�les, thus facilitating a comparison among twoevolution stages; the `in' and `out ' columns indicate coverage and overgeneration, respectively.



grammar to block who and that as complements ofprepositions could have been identi�ed �rst, andthe grammar developer would have been led moredirectly to the source of the trouble.This example of NP Modi�cation shows up athird kind of confusion in the numbers in Fig-ure 3, one that comes from the lack of a balance inthe raw numbers of examples illustrating each phe-nomenon. Since the overall coverage percentage iscomputed in terms of raw numbers of wrongly an-alyzed ungrammatical examples, one might expectthat each variant of a given phenomenon would beillustrated by a handful of examples, and then an-other variant would be introduced. However, inthe tsnlp test suite, like in others, some partic-ular phenomenon can get far more examples thanthe next, partly because of necessary systematicvariation, partly simply because the test suite de-veloper chose to richly illustrate the �rst but notthe second.A fourth source of confusion in the overall cover-age numbers can be more di�cult to correct, sinceit arises from errors in the de�nitions of particu-lar lexical entries. Since one of the design crite-ria for the test suite was to keep the number oflexical entries small, an error in any one of theincluded entries can a�ect a large number of testitems across phenomena classes, obscuring the dis-tinctions these classes attempt to draw. For ex-ample, an error in the entry for an auxiliary verblike did could lead to overgeneration for any exam-ple using this word, but would be hard to detectin test results at any granularity coarser than forindividual lexical entries. For the results reportedin Figure 3, one such lexical error is present, butfortunately does manifest itself even in the coarseclassi�cation scheme used, since its distribution inthe test data is quite restricted, namely to the ex-amples for C Tense-Aspect-Modality. For this phe-nomenon class, the overgeneration percentage issurprisingly high in Figure 3, but the inspection ofindividual test items showed that the lexical entriesfor negative contracted auxiliaries (such as won't)contain an error in their morphology, leading tomultiple spurious analyses for each such test item.In this case diagnosis of the problem was simpli-�ed by the fortunate accident that these negativecontracted auxiliaries are not widely used for testitems in other phenomena classes.3.4 Progress EvaluationAs errors are diagnosed and corrected, or as thegrammar is modi�ed to extend coverage to addi-tional phenomena, the developer often needs tosee how a new instance of the grammar comparesto a previous version. This evaluation of progressin grammar development is helped signi�cantly bythe ability to construct summary reports that con-cisely contrast salient characteristics for the two

versions. One such view of progress is given inFigure 4, showing how grammatical competencechanged over the course of one year with the erggrammar with respect to the standard ten phenom-ena and key metrics from both the coverage andovergeneration pro�les.Some useful inferences about the status of thegrammar can be drawn from even super�cial ex-amination of the test data. For example, it is re-assuring to see that the coverage of sentence typesimproved while the average number of analyses forthese test items dropped. In contrast, while cov-erage of sentence-level agreement also rose, so didthe average number of analyses, suggesting thatthere may be a noticeable problem with overgen-eration for these items in the October 1997 versionof the grammar (and indeed, overgeneration wasincreased by a factor of 1:4).An inspection of the two coverage (`in') columnsshows that, as one would hope, coverage has im-proved for almost every phenomenon type, withthe exception of NP Coordination, which stayed
at (though a more detailed examination of thetest results for this phenomenon revealed that twosomewhat di�erent sets of items are admitted inthe two versions of the grammar, and accidentallyresult in the same number of correct items). Fortu-nately, while overgeneration also increased as cov-erage grew, it did not increase very much, and in-deed fell for some phenomena, su�ering severelyonly for NP Coordination. Through the elimina-tion of disjunctions from the grammar (see be-low), the average number of lexical entries grewmarkedly across the board, and while the aver-age number of syntactic analyses also grew, thetable shows much more variation in analyses byphenomenon.Three of the phenomena which showed thelargest increase in lexical ambiguity (Diathesis-Passive, Tense-Aspect-Modality, and Negation) allfeature auxiliary verbs, suggesting that other sys-tematic errors may have been introduced in theselexical entries (beyond the negative contraction
aw mentioned above), leading to spurious lexicalambiguity. Here the classi�cation by phenomenaalong only one dimension partially obscures whatmay be a single source of error in the auxiliaryverb system; this illustrates the potential bene�tto the developer of allowing multiple classi�cationsof phenomena for particular test items. On theother hand, this comparison at the coarse-grainedlevel provides the developer with a reassuring briefoverview of system behavior at two time points,and would quickly reveal any systematic errors cor-responding to the chosen phenomena.3.5 System PerformanceWhile the tsnlp tools clearly hold the potentialfor signi�cant bene�t to the grammar developer in



analyzing linguistic coverage, or competence pro-�ling, they also enable the recording and analysisof detailed performance characteristics of a parserfor a given grammar. As with competence proper-ties, performance measures can be stored and re-trieved at several levels of granularity, includingbroad phenomena, particular test items, or indi-vidual readings. These measures can include thetime required to compute a parse, the number ofparsing tasks attempted and completed, and thespace consumed during parsing or in the resultingdata structures.Within the page development system, severaluser-settable parameters are available for tuningthe performance of the parser and uni�er to theparticular properties of the grammar. Parame-ters include the order of instantiation for daughtersin a rule, the relative priority of individual rules,and even arbitrary properties of phrases such asthe number of words they span, as well as sim-pli�cation steps to be taken after uni�cation offeature structures. Since the interactions amongthese parameters can be complex and even experi-enced grammar engineers often �nd their intuitionsabout the system behaviour incomplete, the devel-oper must experiment with a variety of settings toderive the best performance from the system. Thetsnlp tools enable the developer to approach thetuning task systematically, maintaining a rich, ac-curate record of past experimental results, in a uni-form representation that allows performance prop-erties to be associated with linguistic phenomenaof varied granularity.To take a familiar example in processing head-driven grammars, one can derive signi�cant e�-ciency bene�ts by choosing the order in which thedaughters in each rule are picked up: although ex-perimenting with distinct rule expansion strategiescon�rmed the (rather obvious) prediction that anhpsg grammar will bene�t in parsing from a head-�rst strategy, it also pointed the developer to a�ner-grained tuning process where some particu-lar rule schemata actually do better with an id-iosyncratic ordering. When the data are studiedon a rule-by-rule level (again taking advantage ofthe granularity variation supplied by the pro�lingmachinery), they suggest, for example, that of thethree speci�c �ller-head schemata in the grammar,the two for WH and relative clauses reduce the av-erage number of parser tasks if the nonhead (the�ller) is picked up �rst, in contrast to the declara-tive variant, for ordinary topicalization. What theintegrated pro�ling mechanism provides is a meansto determine for a non-trivial grammar which lex-ical heads in which constructions should be pickedup �rst in order to minimize processing costs.Another longer-term experiment took advantageof the modular design of the page environment andthe fact that the erg grammar does not deploy the

full expressivity of the page formalism. As | forboth theoretical and practical reasons | the gram-mar makes no recourse to disjunctive or negatedconstraints, it allowed the erg coordinator to sub-stitute a simpli�ed and optimized uni�er in placeof the standard page uni�cation engine.While implementing and tuning the lightweightuni�er and its interface to the type system andparser, the precise measurement of the resultingdecrease in both space and time usage across ruleand phenemona types allowed the identi�cation ofinitial bugs in the algorithm | even though theseonly showed up in rare circumstances | and italso provided a detailed pro�le of which param-eters have a strong impact on uni�cation costs.Thus both competence and performance propertiesof the experimental module could be derived, pro-viding guidance to ensure correctness of the algo-rithm, and presenting further targets for improvede�ciency.Figure 5 summarizes an intermediate stage ofsystem optimization (as of October 1997) com-pared to an earlier version of the erg grammar andpage software. Aggregating test items by stringlength demonstrates that input size has an obviouse�ect on processing costs (as is to be expected). Ig-noring the relatively sparse populated class of testitems with more than nine words for a moment, itseems to be the case that the speedup in process-ing time and reduction of memory usage manifestsitself relatively uniformly across the classes; espe-cially when normalized with respect to the increasein parser tasks (i.e. looking at the average time perparser action by crediting column nine to columnten), all four classes in fact show a time reductionbetween 75 and 83 %.Yet, the classi�cation by item length is primarilychosen to allow the comparison to a random sampleof 96 sentences drawn from the English VerbMobil5corpus, a collection of task-oriented appointmentscheduling dialogues. In general, there is an openquestion about whether performance metrics ob-tained on test suite data | which was arti�ciallyconstructed to reduce ambiguity and phenomenainteraction | can at all be meaningful for appli-cation pro�ling and optimization; obviously, someof the challenges in real-world (e.g. corpus) dataare eliminated in a well-designed test suite. Thepro�ling machinery discussed in section 3.1, how-ever, is not restricted to the tsnlp (or hp) testdata. For VerbMobil grammar development, for in-stance, the same engine is used to store and processapplication-speci�c corpora such that both types ofdata are available from a uniform source and can5VerbMobil is a large-scale research project on spo-ken dialogue machine translation funded by the Ger-man national government. Some of the erg grammarengineering at CSLI is carried out within the VerbMo-bil context.



total oct-96 oct-97 reductionAggregate items tasks time space tasks time space tasks time space] � � (s) � (kb) � � (s) � (kb) % % %9 � length � 12 80 1553 6.5 34872 4832 5.2 25522 -211.1 19.9 26.86 � length < 9 1343 1098 5.8 27331 1599 1.5 8837 -45.6 74.2 67.73 � length < 6 2849 467 2.1 14196 671 0.6 4027 -43.7 73.6 71.60 � length < 3 239 131 0.4 5235 162 0.1 988 -23.7 72.8 81.1Total 4511 653 3.2 17932 999 0.9 5705 -53.0 71.5 68.2Corpus 96 1684 32.8 68629 3885 8.4 24373 -130.7 74.5 64.5Figure 5: erg Performance Progress Pro�le comparing oct-96 to oct-97. tsnlp test items are aggregatedinto four classes (by string length) that directly correlate with the number of parser tasks, average processingtime, and memory usage. All classes demonstrate a signi�cant reduction in time and space resource consumption(by about a factor of four) even though by (i) extending coverage between the two grammar releases and (ii)eliminating disjunctive constraints lexical and structural ambiguity (re
ected in the number of parser tasks here)were substantially increased. The bottom line relates the performance comparison for the arti�cially constructedtest items to results obtained for a random sample of 96 sentences from the VerbMobil corpus (average sentencelength: 8.4 words); although for the corpus data processing costs are in general higher because of more ambiguity,it is reassuring that the proportions in columns nine to eleven are mostly comparable.total positive word lexical parser total overallPhenomenon items items string items analyses results coverage] ] � � � ] %S Types 235 179 6.83 24.15 2.91 118 65.9C Agreement 68 49 6.00 16.92 1.95 41 83.7C Complementation 179 108 5.46 16.78 2.46 99 91.7C Diathesis-Passive 35 27 6.63 26.78 5.50 24 88.9C Tense-Aspect-Modality 83 79 5.39 18.49 3.47 66 83.5C Negation 58 44 5.23 16.32 2.63 41 93.2C Coordination 79 57 8.33 23.84 5.42 43 75.4C Modi�cation 174 121 7.14 21.39 2.65 80 66.1NP Agreement 46 37 4.86 17.03 2.48 31 83.8NP Modi�cation 83 71 7.08 20.35 3.05 56 78.9NP Coordination 55 26 5.38 12.58 4.74 23 88.5Total 1095 798 6.40 20.32 3.12 622 77.9Figure 6: erg Coverage Pro�les (on hp test suite) as of oct-97; see Figure 2 for comparison.total negative word lexical parser total overallPhenomenon items items string items analyses results coverage] ] � � � ] %S Types 235 56 7.11 25.25 2.50 8 14.3C Agreement 68 19 3.42 8.63 1.18 11 57.9C Complementation 179 71 5.52 16.87 3.00 18 25.4C Diathesis-Passive 35 8 7.37 29.62 2.00 4 50.0C Tense-Aspect-Modality 83 4 6.50 21.00 4.75 4 100.0C Negation 58 14 4.71 11.00 0.00 0 0.0C Coordination 79 22 8.05 23.18 4.57 7 31.8C Modi�cation 174 53 6.51 20.96 3.89 19 35.8NP Agreement 46 9 4.22 14.89 1.75 4 44.4NP Modi�cation 83 12 7.92 21.58 1.00 1 8.3NP Coordination 55 29 4.90 11.31 3.15 20 69.0Total 1095 297 6.07 18.83 3.03 96 32.3Figure 7: erg Overgeneration Pro�les (on hp test suite) as of oct-97; see Figure 3 for comparison.



deploy similar report generation techniques.Going back to Figure 5, the comparison betweenthe averages for the tsnlp data and the VerbMo-bil results reveals that indeed processing costs arein general much higher for the corpus sentences;thus, the test suite results cannot be taken as a di-rect predictor on analysis complexity relative to theinput string length. Still, the VerbMobil data indi-cate a very similar overall time and space reductionas the corresponding class (six to nine words) in thetsnlp test suite; besides providing reassurance tothe developers, it is demonstrated that the test-ing and optimization of the new lightweight uni�er(and other modules) can often rely on comparativepro�ling using the arti�cally constructed data. Af-ter all, parsing the test suite data is much fasterand cheaper than for most corpus sentences. Gen-erally speaking, it is not at all clear where perfor-mance pro�les obtained from test suites can be rep-resentative for a speci�c application and domainand where not. And while many of the metrics pre-sented earlier should allow the developer to makean informed prediction about in which respects aparticular (new) data sample and the available ref-erence data di�er and what e�ect there should beon system behaviour, clearly this area requires fur-ther investigation.4 Comparing tsnlp to the hp Test SuiteThough the tsnlp test suite developers derivedsome design ideas and some test items from the hptest suite released in 1987, they pursued a more rig-orous methodology in the construction of the dataset, which should be visible in a comparison of thesame erg grammar against both suites (serving asa control experiment for the practical results re-ported earlier). For this purpose the hp test datawas imported into the tsnlp test suite databaseand augmented with the minimal annotations re-quired for the comparison. Above all, these in-cluded the classi�cation into top-level tsnlp phe-nomena which was sometimes intricate because (i)the hp developers when constructing the data hadassumed an underlying system that makes a num-ber of grammar-speci�c distinctions and (ii) someof the hp items present multiple phenomena in(mostly unsystematic) combination, a state of af-fairs that, though potentially very rewarding, wasdeliberately excluded in the tsnlp data. Still,about 90 % of the hp data set could be mean-ingfully classi�ed and taken into account for thecomparison.The data in Figures 6 and 7 summarizes the re-sults of running the erg grammar against the hpsuite, and the list of phenomena is similar to thatfor the tsnlp suite, but with passive as the onlyexample of diathesis alternations, and with the ad-dition of two phenomena classes, for clause-levelcoordination and modi�cation.

One quickly noticeable di�erence between thetsnlp and the hp sets is that the length of the av-erage test item in the tsnlp collection is less thanthat of the hp examples, yet the average lexicalambiguity per test item is nearly the same for thetwo. Also obvious is the fact that there are propor-tionately about �ve times as many ungrammaticalexamples in the tsnlp suite as there are in the hpone. Although this is a natural consequence of thetsnlp methodology aiming for a systematic andexhaustive derivation of negative (i.e. ill-formed)test items, it will lead to a potential skewing of theresults on overgeneration.Other less obvious di�erences between the twosuites which help to account for the variability innumbers comparing Figures 2 and 6 and Figures 3and 7, respectively, are the following:� there are no examples of stand-alone NPs in thehp test data;� there are examples of sentence-level coordinationin the hp but not in tsnlp, which contributesto longer average string length;� there are no negative contractions in the hp suite(which helps boost the overall coverage);� the hp suite contains examples of adverbial mod-i�cation;� there is almost no diathesis in the hp suite; and� much less care was taken with the hp suite in try-ing to avoid unintended analyses for test items.These signi�cant di�erences in coverage of phe-nomena types and in methodology of constructionmake the comparison of the two test suites moredi�cult, but it is still reassuring that the percent-age of overall coverage is very nearly the same forthe two suites.One striking di�erence between the two sets ofnumbers is that there is slightly greater lexical am-biguity in the tsnlp examples, in spite of a �rmintent to minimize such ambiguity in the construc-tion of test items. In contrast, another of the de-sign goals of the tsnlp e�ort is vindicated by com-parison: there is less structural ambiguity in thetsnlp items than in the hp sentences which, infact, was among the inadequacies criticized morefrequently.While the comparison of the numbers in the twotables presents a strong parallelism of results forthe erg grammar, a more careful study of thetest items themselves reveals that the tsnlp designpresents the developer with the means to tune theitems so they provide more illuminating data aboutthe grammar being tested. More importantly, the



developer can exploit the rich annotation capabili-ties provided in the tsnlp framework to dramati-cally improve the precision of the successful analy-sis notion for a given test item. Since unintendedambiguity, both lexical and structural, continuesto be exhibited in both test suites built ten yearsapart, it seems clear that this ability to provide an-notations about what properties of an item shouldbe of interest will be crucial in making the testsuite results even more revealing to the grammardeveloper.5 Technological AssessmentThough it was not initially planned, the tsnlpproject has devoted some e�ort to software build-ing for test suite construction, maintenance, andapplication; among the main motives for includinga set of test suite tools into the tsnlp package werethat the consortium in an initial survey on pub-licly available test suites had found that virtuallyno specialized technology was available and, hence,the reuse, adaptation, extension, and application ofexisting test data is often severely hindered.Judging from close to a full year of regular usageof the evaluation machinery sketched earlier, themost central tool from the tsnlp package, viz. thetest suite database tsdb, has been found highly ad-equate in some ways and substantially limited inothers. Oepen et al. (1997) give the reasons forimplementing tsdb as a home-grown standalone re-lational database with a simpli�ed query languageas (i) suitability, (ii) extensibility, (iii) portability,and (iv) simplicity.From the four desiderata, items (i), (iii) and (iv)are mostly met: the database compiles on a va-riety of platforms and is available in binary formfor the most common (Un�x) installations. Despitethe lack of complete, detailed, and up-to-date user-level documentation, tsdb is easy to install and use;the simpli�ed query language, though greatly re-stricted in functionality compared to full SQL, en-ables users to take advantage of the test suite struc-ture and annotations without a full or even tech-nical understanding of the underlying data model.The storage of tsdb data �les in an ASCII represen-tation that is directly accessible to standard Un�xtext processing utilities (grep(1) et al.) is oftennoted to increase the transparency and 
exibilityof the data set.From an interface design perspective, integrationinto the page grammar development environmentwas straightforward, using tsdb as a backgroundprocess that communicates with page througha standard (�fo) input and output channel.6Through a layer of wrapper functions in the(Common-Lisp) page universe most of the tsdb6A similar approach proved feasible in integratingtsdb into the EU-funded alep grammar developmentsystem; see Oepen and Groenendijk (1997) for details.

functionality (retrieval and storage of data, settingparameters et al.) is made available to other mod-ules (e.g. the report generator) as well as throughthe page command-level user interface. Becausethe database does not require a centrally adminis-tered server process or other special privileges (asis the case for larger database systems), it can bedistributed in binary form as part of the standardpage releases, such that someone installing and us-ing the grammar engineering environment need noteven be aware of the existence of the database.Regarding extensibility, the user & applicationpro�le concept made it very easy to add relationsto the database as needed to store page- and erg-speci�c pro�ling results and output speci�cations.Yet, database size and e�ciency impose some lim-itations: given the wealth of information gatheredduring a single test run, it is not feasible to buildup a progress pro�le re
ecting several test runs ina single database. Instead individual test runs arestored as separate databases (i.e. directories), a de-sign that delegates most of the bookkeeping overtest runs into the �lesystem; since comparative re-port generation is implemented within page (inCommon-Lisp) rather than within tsdb, the sepa-ration of databases poses no practical problem (andoften simpli�es queries). However, in a productionenvironment where greater scalability was required| for example if developers wanted to store largeamounts of data (e.g. complete features structuresobtained as parsing results) as part of a pro�le | itmight be desirable to substitute a full-blown (com-mercial) database system for tsdb; besides the ex-tra installation and maintenance cost there shouldbe no principled obstacle but a considerable gain ine�ciency and general database functionality (fullSQL).Another important aspect in handling the testsuites is visualization and editing support. tsnlpincludes a graphical (form-based) editor for thecore test data (test items, phenomena classi�ca-tion, and test sets); however, the tool does not al-low the production or inspection of user & applica-tion pro�le data, because these can be of variableformat. And although the bulk of the user & ap-pliation pro�le is typically not produced manually(but gathered from a test suite run), at least theoutput speci�cations (e.g. the number of analysesexpected for a test item, particular semantic for-mulae, upper limits for parser tasks or garbage col-lections) often require manual editing; as it stands,this currently amounts to text editing the ASCIIrepresentation of tsdb tables. Similar to the ex-isting test data editor, a customizable browser andeditor for the user & application pro�le layer of theannotation schema would be required.In general, user interfaces remain an open issue.As both tsdb and the page development shell arepurely command- (or ASCII)-based, they nicely



match in their default mode of operation and givedevelopers direct and full control over the capabil-ities of the underlying machinery. Yet, it can bedi�cult to train less experienced users (e.g. stu-dents experimenting with the grammar as part ofa practical class; let alone linguistics professors)and enable them to bene�t from the pro�ling en-gine and report generation facilities; the set of pa-rameters in both creating a new database, doinga test suite run, and especially identifying the ap-propriate view on the data for report generationis substantial; here, again, a specialized graphicaltool that visually presents the set of choices andhardwires a number of common interactions withthe machinery would be expected to greatly en-hance usability and acceptability. Strictly speak-ing, however, such a tool cannot be implementedas part of the test suite per se (and thus providedin the tsnlp package) because it closely interactswith the development system (i.e. the applicationto be evaluated). Here, again it seems, an inher-ent mutual dependency of the evaluation tool andsystem under evaluation manifests itself.6 Conclusion: A Few Recommendationsto Test Suite Developers and UsersThe general conclusion on experimenting with thetsnlp data and tools within the erg consortiumis very positive. The test suite machinery provedto be an essential tool in practical grammar engi-neering and has enabled the developers to (i) pre-cisely identify several (often systematic) de�cien-cies in various evolution steps of the erg grammarand lexicon and (ii) greatly improved their under-standing of the overall resource and thus guidedand focussed the work on improving the grammat-ical competence and system performance. Aboveall, the tsnlp test data and technology were foundsu�ciently mature and 
exible for regular deploy-ment in a production environment; the methodol-ogy is sound and highly scalable.Besides the criticism and suggestions for im-provement presented in the earlier discussion, thefollowing paragraphs summarize a few more gen-eral observations (and recommendations) that maybe of interest to future test suite developers andusers alike.Iteration It is often assumed that applicationdevelopment and test suite construction should becompletely independent processes (as was the casefor most of the tsnlp e�ort) and that once a com-plete test suite is produced it will serve as a gold-standard reference. Obviously, this approach is im-practical and, we argue, often just as much the-oretically undesirable (a similar case is made inGamb�ack (1997) for what is called composition-ality evaluation there). At least for the grammarengineering evaluation scenario, a prototypical test

run will provide feedback to the current state ofthe grammar, the processing components, the testdata, and the evaluation machinery itself.In initially setting up the testing environment,for example, a number of iterations (spread outover several months) were needed to� implement and debug the tsdb to page integra-tion;� add missing vocabulary to the erg lexicon;� identify useful competence and performancemetrics and extract them from the processingcomponents;� make the test run processing fault-tolerant tovarious types of system errors;� customize and correct the test data;� de�ne appropriate report generation strategiesthat present test results at di�erent levels ofgranularity.Obviously, both the grammar (plus developmentenvironment) and the test suite itself bene�t signif-icantly throughout each iteration. Thus, it seemsplausible to integrate a similar process| invert thestandard conception of the world and use a wide-coverage grammar as an evaluation metric for thetest data | into future test suite building.Use of Annotations One important use ofannotations on test items is to make the intendeduse (or interpretation) of an item explicit, evenif that item proves to have other analyses notconsidered by the developer. In the process ofsystematic derivation of ill-formed examples fromgrammatical test items, for example, within theC Complementation (verb valency) phenomenonthe developers have regularly applied a procedureof elimination of obligatory arguments. Accord-ingly, there is a large number of test items of thetype `*Accounts for her.' or `*Battles against it.'(resulting from subject deletion) marked as un-grammatical, where apparently the test data au-thors either expected the initial capitalization toblock a noun phrase analysis, or were simply un-aware of the alternative reading. The erg gram-mar (partly designed for processing speech recog-niser output that has no reliable capitalization in-formation), however, makes no use of the spellingor punctuation clues. Therefore, the pro�ling ma-chinery records the noun phrase readings as gen-uine overgeneration.Yet, the tsnlp annotations include an indica-tion of the root category for all test items, suchthat the coverage and overgeneration scoring couldeasily be adjusted if the evaluators supplied a map-ping from the categories derived by the erg gram-mar (hpsg feature structures) to the annotations



used in the test suite (atomic labels for morpho-syntactic categories). Although such a transfor-mation is trivially implemented (in fact, for theerg grammar part of it already exists to allow theprinting of phrase structure trees with atomic nodelabels), it is obviously dependent on the grammarand, again, requires maintenance as the grammarevolves throughout iterations.Another obvious candidate to vastly improve theaccuracy of automatically computed pro�les wouldbe the inclusion of further annotations | espe-cially the underspeci�ed dependency structure rep-resentation, chosen by the tsnlp developers as a(mostly) theory-neutral intermediate format thatabstracts from idiosyncratic phrase structure as-sumptions | from the test suite into the scoringof results. Again, a mapping from actual parsingresults to the format used in the test suite databasewould be required. As this mapping of hpsg treerepresentations into functor { argument structuresis a non-trivial task however, it seems it will only beworth the e�ort if the dependency structure anno-tations in the test suite were complete and consis-tent; unfortunately, for all three (English, French,and German) test suites delivered by tsnlp thisis not the case. Many test items have no or onlyincomplete dependency structure annotations; be-sides, manual inspection suggests there are remain-ing inconsistencies.Summing up, the requirements on annotationsimposed in a fully automated pro�ling approachare much higher than those for simple browsing ofthe test suite database. While the existing annota-tions already serve well to (i) explicate the underly-ing structure of the data (and some of the method-ology applied to their construction) and (ii) facil-itate the formation of various subsets that can bemeaningfully interpreted, a better quality would berequired for inclusion into the automated interpre-tation. Once more, it seems, an iterative approachbuilding on mutual feedback and comparison be-tween a large-scale grammar and the test suite de-velopment should be highly bene�cial in improvingthe overall value of the diagnostic resource; afterall, much of the knowledge and competence neededfor test data writing is very similar to that requiredin grammar engineering.Phenomena Dependencies Asobserved above, evaluation results can be signi�-cantly skewed where test items re
ect more thanone phenomenon being measured, unless the de-pendencies among phenomena are made explicit.While the tsnlp annotation schema already fore-sees marking one phenomenon as dependent on an-other (by means of a presupposition attribute inthe phenomena description), this is often insu�-cient to capture individual relations between testitems (from various phenomena), as would be re-

quired to allow the automated adjustment in cov-erage and overgeneration scoring.To return to the example of passives discussedearlier, individual inspection of grammatical itemsthat are rejected by the grammar reveals that thedisappointing coverage for this phenomenon (seeFigure 2) is partly due to missing complementa-tion patterns in the lexicon; so, a number of failingtest items are falsely charged to the passive analy-sis, even though they are essentially ruled out lexi-cally already. And for phenomenon-internal mo-tives it may even be the case that a particularverb frame has more statistical weight (i.e. a higherfrequency in tokens) among the passive examplesthan in the C Complementation phenomenon it-self. Therefore, a simple-minded comparison ofoverall coverage on the phenomenon level cannotilluminate this issue.Besides, the fact that the passive phenomenonlists complementation as a general presuppositionis equally uninstructive for these cases. Insteadit would be necessary to make the dependencyamong items explicit at the level of individual to-kens. Thus, if and only if a passive item had anovert link to the corresponding usage of its matrixverb within the complementation data, the pro-�ling machinery could detect where the failure ofanalysis originates and then automatically adjustthe scoring. Clearly, this approach cannot be fea-sible for all types of dependencies that one maypostulate between test items and may ultimately,at least in part, be speci�c to a particular appli-cation or grammar; it remains to be seen, to whatextend the approach can be implemented.The tsnlp annotation schema already foreseesthe grouping of (positive or negative) items intowhat is called a test set. For the existing datatest sets are primarily used to relate (sets of)ungrammatical examples to the underlying well-formed item(s) from which the negative item(s)were derived. In principle, the same approachcould be used to record dependencies across phe-nomena with only one extension that would berequired, viz. to 
ag test sets for the nature (orpurpose) of grouping that they represent. If suchan attribute was added to the test set description,there could then be multiple layers of test itemgroupings, each encoding a di�erent dependencytype (purpose); the obvious example of passives,for instance, could use a label like `presupposition'to specialize the overall dependency relation be-tween phenomena classes on the test item level.Additional mechanisms may be needed to allowthe developer to establish e�ciently the relevantdependencies for a new test item, for example tosupport transitivity (or inheritance) of dependencyrelations, which would permit the automatic com-putation of the relevant background dependenciesgiven some phenomenon.



Future Work While the present study isbased on the hand-built tsnlp data, the toolsare in fact well-suited for detailed analysis of datadrawn from corpora, with the associated greaterdemands of larger vocabulary and greatly increasedambiguity. Since the test items can be readily an-notated for alternate syntactic bracketings and se-mantic interpretations, the tsnlp machinery en-ables the developer to precisely monitor develop-ment of the grammar as it grows to accommodatesuch real-world data.Based on a generalized notion of performancepro�ling for hpsg-type grammars (along the linesof section 3.5), it is expected that the close cou-pling of grammar development platform(s) and thetsnlp database approach will allow for an im-proved understanding of the inherent computa-tional complexity in processing and key factors inprocessing costs. Aiming for an improved perfor-mance model, the pro�ling methods discussed willbe used as an experimentation environment to eval-uate how specialized control, learning, and compi-lation techniques can improve system behaviour.Thus, frequent pro�ling, analysis, and adaptationcycles become an integral part of regular systemand grammar development.Acknowledgements The research and im-plementation work has been carried out inclose collaboration between CSLI Stanford andSaarbr�ucken University over the past few years.The authors are greatly indebted to numerous col-leagues at the two institutions and their scienti�cvicinities for invaluable discussions and productivecriticism. To name only a few, the feedback pro-vided by John Carroll, Anne Copestake, MariusGroenendijk, Tibor Kiss, Sabine Lehmann, JohnNerbonne, and Hans Uszkoreit has greatly con-tributed to the present results. In addition, audi-ences at Potsdam, Tusnad, Stuttgart, Tbilisi, andHeidelberg and several anonymous reviewers havegiven important comments on various versions ofthis paper.Throughout the submission and a number of re-vision stages for the manuscript, Rob Gaizauskashas always been an exemplary editor | oneequipped with a rare combination of patience, 
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