

Towards Holistic Testing

Grafting Treebank Maintenance into the Grammar Revision Cycle

Stephan Oepen

Universitetet i Oslo & CSLI Stanford

Dan Flickinger

CSLI Stanford

oe@csli.stanford.edu

danf@csli.stanford.edu

Francis Bond

NTT Communication Science Laboratory bond@cslab.kecl.ntt.co.jp

Why Both a Grammar and a Treebank?

Ambiguity Management

- With broad-coverage grammars, even moderately complex sentences typically have multiple analyses (tens or hundreds, rarely thousands);
- unlike in grammar writing, exhaustive parsing is useless for applications;
- identifying the 'right' (intended) analysis is an 'Al-complete' problem;
- → emerging work on stochastic parse selection requires training material.

Sustained Coverage

- Large-scale grammars are intricate: systematic regression testing;
- variety of constructions across different data sets; corpora and test suites;
- \rightarrow need to identify and maintain *intended* analyses, trees, semantics, et al.

Our Grammar: LinGO English Resource Grammar

Development Background (1993 – present)

- General-purpose, wide-coverage, computational English grammar;
- mainly Dan Flickinger, with Rob Malouf, Emily M. Bender, Jeff Smith;
- supported in multiple HPSG processing environments (LKB & PET).

Design

- HPSG [Pollard & Sag 1994]: constraint-based, strongly lexicalized;
- MRS [Copestake et al., 1999]: flat, event-based, underspecified;
- type hierarchies defining principles, lexical classes, constructions;
- strict grammaticality assumption: generator using same grammar.

LinGO ERG: Coverage and Size

Linguistic Coverage

- 85 % of 12,000 transcribed dialogue turns from VerbMobil domains;
- 80⁺ % of customer emails in financial and ecommerce domains;
- both fairly short utterances: average 9 words, ranging from 1−40;
- 80 % of phenomena-based examples in Hewlett Packard test suite.;
- more recently, 95 % on excerpts from tourism brochures (13 words).

Size of Grammar (as of October 2003)

- some 2,600 types for fundamentals, lexicon, rules, and sematics;
- 11,152 lexical entry stems (around 2,500 verbs and 3,100 nouns);
- 27 lexical (15 inflectional) rules and 96 phrase structure schemata.

Sample Data (Tourism Domain) Analyzed by LinGO ERG

- 1 Be considerate of game, farm animals and other hikers.
- 109 Kjeragveggen has interested climbers since the 1970s.
- 304 But there are things to do for those with knickers and anoraks too.
 - 39 Follow the road past NUTEC and continue up along Kvarvenveien, past the recreation area.
- 248 The first part of the trip goes with the Hurtigruta to Torvik, with a bicycle ride at night into the sunrise out to Runde, and a hike to Norway's southernmost bird mountain.
- 326 If there is one thing Swedes are concerned with, it is preparing delicious dishes.

Grammatical Coverage on Tourism Excerpts

	total	word	lexical	parser	total	overall			
Aggregate	items	ms string item		analyses	results	coverage			
	#	ϕ	ϕ	ϕ	#	%			
$35 \leq i$ -length < 40	1	35.00	109.00	2372.00	1	100.0			
$30 \le i$ -length < 35	2	32.50	109.00	1768.00	2	100.0			
25 ≤ <i>i-length</i> < 30	7	26.71	100.57	1393.14	7	100.0			
$20 \le i$ -length < 25	28	21.68	78.36	931.93	28	100.0			
$15 \le i$ -length < 20	72	16.89	54.08	136.18	67	93.1			
10 ≤ <i>i-length</i> < 15	119	11.77	39.85	35.87	113	95.0			
$5 \le i$ -length < 10	95	7.47	23.49	5.79	89	93.7			
$0 \le i$ -length < 5	6	4.00	7.67	1.33	6	100.0			
Total	330	12.86	42.85	177.17	313	94.8			

(generated by [incr tsdb()] at 14-nov-2003 (22:49 h))

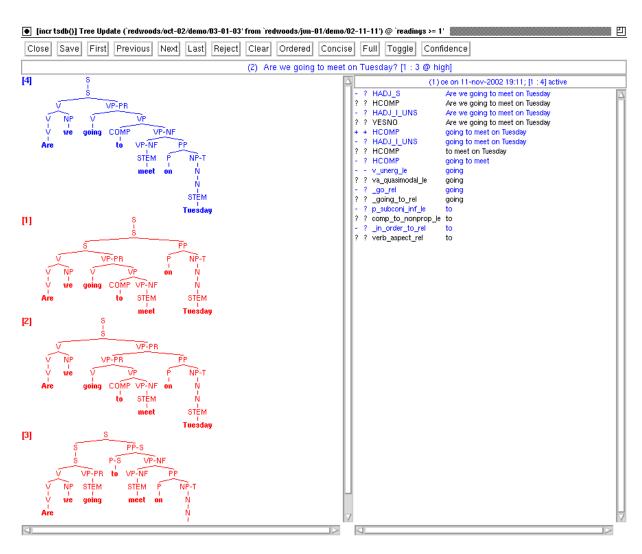
Why (Yet) Another (Type of) Treebank?

Requirements for Disambiguation

- syntax vs. semantics topicalization vs. attachment ambiguity;
- granularity adequate match to degree of granularity in grammar;
- adaptability map into various formats; semi-automated updates.

Existing Resources (PTB, SUSANNE, NeGra, PDT, et al.)

- (primarily) mono-stratal topological or tectogrammatical;
- (relatively) shallow limited syntax, little or no semantics;
- (mostly) static (manual) ground truth annotation, no evolution.


LinGO Redwoods: a Rich and Dynamic Treebank

- Tie treebank development to existing broad-coverage grammar;
- hand-select (or reject) intended analyses from parsed corpus;
- [Carter, 1997]: annotation by basic discriminating properties;
- record annotator decisions (and entailment) as first-class data;
- provide toolkits for dynamic mappings into various formats;
- integrate treebank maintenance with grammar regression testing.

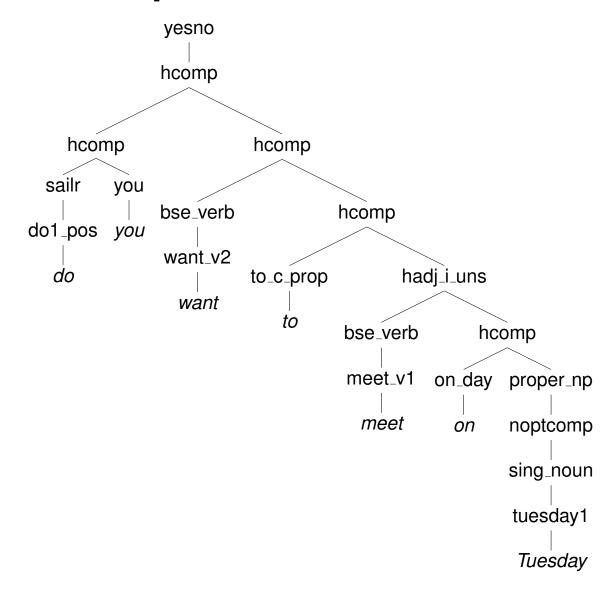
Key Challenges

- Derivative of grammar: undergeneration results in gaps in treebank;
- grammar evolution gradually invalidates treebank; update procedures.

LinGO Redwoods: A Quick Test Drive

Annotation: Basic Discriminating Properties

Key Notions

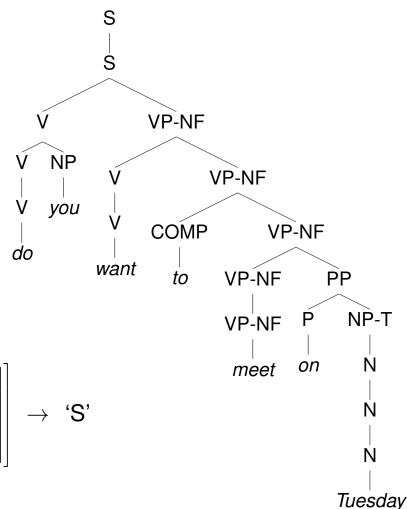

- Extract minimal set of basic discriminants from set of HPSG analyses;
- quick navigation through parse forest; easy to judge [Carter, 1997];
- constituents: use of particular construction over substring of input;
- lexical items: use of particular lexical entry for input token (a 'word');
- labeling: assignment of particular abbreviatory label to a constituent;
- semantics: appearance of particular key relation on constituent.

Preliminary Experience

Stanford undergraduate annotates some 2000 sentences per week.

HAINAN — 20-MAR-04 (oe@csli.stanford.edu)

Redwoods Representations: Native Encoding



HAINAN — 20-MAR-04 (oe@csli.stanford.edu)

Derived Encodings: Labeled Phrase Structure Trees

- reconstruct full HPSG analysis from derivation tree;
- optionally, collapse or suppress nodes.
- match underspecified feature structure 'templates' against each node:

$$\left[\begin{array}{c} \mathtt{SYNSEM.LOCAL.CAT} \left[\begin{array}{c} \mathtt{HEAD} \ \textit{verbal} \\ \mathtt{VAL} \ \left[\begin{array}{c} \mathtt{SUBJ} \ \ \langle \ \rangle \\ \mathtt{COMPS} \ \textit{*olist*} \end{array} \right] \end{array} \right] \rightarrow \text{`Simple Substantial Substanti$$

HAINAN — 20-MAR-04 (oe@csli.stanford.edu) —

Derived Encodings: Elementary Dependencies

- Reconstruct full HPSG analysis, compute MRS meaning representation;
- extract basic predicate argument structure with uninterpreted roles;
- \rightarrow labeled dependency graph fragments of (primarily) lexical relations.

```
e2:{
    _1:int_m[MARG _2:prpstn_m]
    _2:prpstn_m[MARG e2:_want_v_1]
    e2:_want_v_1[ARG1 x6:pron, ARG2 _3:prpstn_m]
    _3:prpstn_m[MARG e14:_meet_v_1]
    e14:_meet_v_1[ARG1 x6:pron]
    e15:_on_p_temp[ARG1 e14:_meet_v_1, ARG2 x16:dofw(tue)]
}
```

Holistic Testing in Grammar Engineering

- Resource grammar serves multiple purposes
 Implementation of linguistic analyses
 Coverage of corpus phenomena for multiple applications
- Grammar tuning for one 'customer' can affect others
 Additional analyses more ambiguity
 Dropped analyses loss of coverage
- Exhaustive testing is required to ensure consistency
 Representative data exhibiting all relevant phenomena
 Identification of the intended analysis for each item
- Cost of testing must be kept low
 Multiple test—tune—test cycles needed for each grammar release
 Only essential discriminants presented to grammar writer

Semi-Automatic Update Procedure

Bi-Weekly Internal Releases of Revised Grammar

- Regularly, with new grammar version, obtain updated parsed corpus;
- propagate annotator decisions (discriminants), primary and entailed.
- new ambiguity: distinctions added to the grammar, manual resolution;
- invalid or spurious discriminants: distinctions lost or reformulated;
- 'misleading' discriminants: theoretically possible but (highly) unlikely;
- inspection of mismatches provides diagnostic feedback to grammar;
- integration with grammar development cycle, minimize manual work.

Some of the Active Development Sets

	active = 0			ac	active > 1				
	#		×	#		×	#		×
VM ₆	15	14.3	8670	3811	7.9	111	0	0.0	0
ECOC	38	13.1	259	1144	7.4	47	2	6.0	21
TREC	4	11.5	86	662	7.9	20	0	0.0	0
HIKE	1	22.0	876	318	12.9	187	0	0.0	0

- Variation in domain, type (spoken, email, QA, narrative), complexity;
- minor residues of rejected analyses and unresolved ambiguity;
- complemented by syntactic (1348) and semantic (107) test suites.

LinGO ERG: June 2001 vs. October 2002

	jun-01	oct-02	Δ
appropriate features	148	149	−6% + 7%
type hierarchy (excluding lexicon)	3,062	3,895	+27%
grammar rules (including lexical rules)	86	94	-11% +26%
lexical types ('parts of speech')	400	580	+45%
semantic relations ('predicates')	5,406	6,162	+14%
lexical entries	8,135	9,954	+22%
lines of source (excluding lexicon)	25,847	32,199	+25%

HAINAN — 20-MAR-04 (oe@csli.stanford.edu) ———

Semi-Automated Updates: It Actually Works

	I	original		matches		update		final		
Aggregate	items	ϕ	$\displaystyle \mathop{out}_{\phi}$	$\displaystyle \mathop{yes}_{\phi}$	$\begin{matrix} \textbf{no} \\ \phi \end{matrix}$	ϕ	$ \phi $	new_{ϕ}	ϕ	$\displaystyle \mathop{out}_{\phi}$
$\overline{\text{new}} = 0$	1421	1.1	23.6	8.1	8.5	1.0	13.9	0.0	1.0	13.9
new = 1	708	1.1	38.1	6.9	9.8	2.2	29.6	1.0	1.0	30.8
$\text{new} \geq \textbf{2}$	273	1.3	61.5	12.1	15.2	4.2	72.0	2.8	1.0	75.2
Total	2402	1.1	32 ·2	8.2	9.6	1.8	25 ·1	0.6	1.0	25 ·9
$\overline{\text{new}} = 0$	2195	1.0	72.2	17.2	1.0	1.0	69.3	0.0	1.0	69.3
new = 1	73	1.0	31.9	11.7	1.4	2.2	116.0	1.0	1.0	117.3
$\text{new} \geq \textbf{2}$	20	1.0	192.6	13.3	8.0	16.7	297.5	2.9	1.0	313.2
Total	2288	1.0	72 ·0	17.0	1.1	1.2	72 ·8	0.1	1.0	73 ·0

HAINAN — 20-MAR-04 (oe@csli.stanford.edu) —

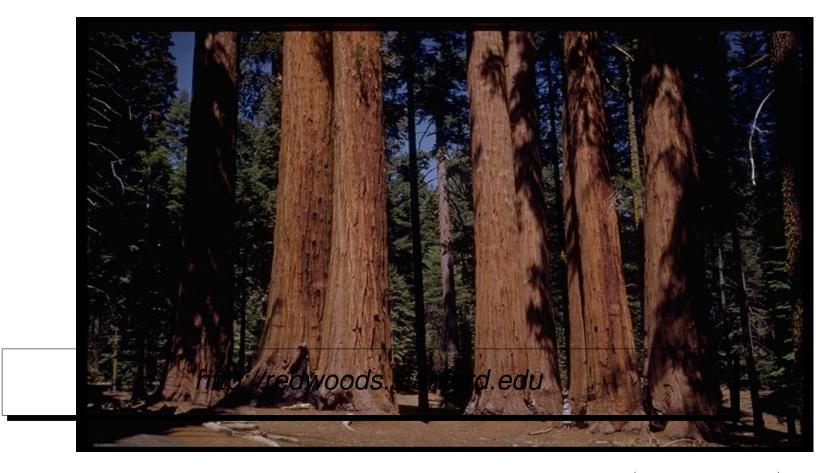
Related Work

Non-Public Environments

- Related work at SRI Cambridge, (Xerox) PARC, and M\$ Research;
- grammars, language corpora, and treebanks not publicly available;
- results published in some cases, generally difficult to reproduce.

Academic Environments

- [Dipper, 2000] LFG for German, 'transfer' into TiGer format;
- [Bouma et al., 2001] HPSG for Dutch, dependency structures only;
- [Simov et al., 2002] parallel treebanking and grammar writing;
- to our best knowledge, no existing rich and dynamic treebanks.


Conclusions — Outlook

- 'Deep' grammar-based processing requires adequate stochastic models;
- no existing treebank resources with suitable granularity and flexibility;
- LinGO Redwoods treebank tied to broad-coverage HPSG implementation;
- \rightarrow paradigm shift in sustainable, broad-coverage grammar engineering.

More Recent Developments

- Expanded annotation in multiple domains with varied characteristics;
- Japanese off-spring: *Hinoki* (NTT); 92 % coverage on dictionary definitions;
- systematic inter-annotator agreement experiments; 'blazing' the trail.

Outlook: Go, Take a Stroll!

Based on Research and Contributions of

Tim Baldwin, John Beavers, Ezra Callahan, Emily M. Bender, Kathryn Campbell-Kibler, John Carroll, Ann Copestake, Dan Flickinger, Rob Malouf, Chris Manning, Ivan A. Sag, Stuart Shieber, Kristina Toutanova, Tom Wasow, and others.

Redwoods Applications: Parse Disambiguation

- Manning & Toutanova (Stanford): generative and conditional models;
- Baldridge & Osborne (Edinburgh): active learning and co-training;
- restrict to Redwoods subset of fully disambiguated ambiguous items;
- feature selection: phrase structure, morpho-syntax, dependencies;
- ten-fold cross validation: score against annotated gold standard;
- preliminary results: 80⁺ % exact match parse selection accuracy;
- on-line use in parser: n-best beam search guided by MaxEnt scores;
- → native encoding performs far better than labeled constituent trees.