
HG7021 Computational Grammars

(De)composition in DELPH-IN MRS

Francis Bond
Division of Linguistics and Multilingual Studies
http://www3.ntu.edu.sg/home/fcbond/

bond@ieee.org

Lecture 7

HG7021

Overview

ª When do words and predicates get out of sync?

â Semantically empty words
â Constructions
â Decomposed words
â Idioms

ª Boundary issues

â Dealing with tokenizers
â When to make decisions

ª Grammar and grammar

(De)composition in DELPH-IN MRS 1

Outline

Often, the mapping between predicate and word is not
one-to-one

ª Some words add no predicates:

â auxiliary be
â infinitive to

ª Some constructions add predicates:

â compound-rule
â pumping rules (N→ NP, NP→ PP, AdjP→ NP, . . .)

(De)composition in DELPH-IN MRS 2

ã Some words add multiple predicates:

â here “this place” (“in this place”)
â there “that place” (“in that place”)
â where “which place” (“in which place”)

ª Sometimes multiple predicates combine to form a special
meaning

â make note of “note”
â play ball “cooperate”
â behind schedule “late”
â rack one’s brains “think hard”

(De)composition in DELPH-IN MRS 3

Empty Predicates

ª Our grammars treat some (very common) words as
basically structural: they link other parts together, but add
no predicate themselves.

ª They pass the hook up and do little else

ª To generate these

â Add them all in every time (ineffecient)
â Write trigger rules: add them in when needed

(De)composition in DELPH-IN MRS 4

Constructions

(De)composition in DELPH-IN MRS 5

Pumping Rules

There are some incomplete phrases, that act as though
there is a missing element:

ª I want to go home “to my house”

ª I put it here “in this place”

ª I like gold “some gold”

ª I like the rich “the rich people”

We do this with pumping rules:

(De)composition in DELPH-IN MRS 6

Head-Specifier Rule


phrase

VAL

[
COMPS 〈〉
SPR 〈〉

] → 2 H

VAL

[
COMPS 〈〉
SPR 〈 2 〉

]

(De)composition in DELPH-IN MRS 7

NP Pumping Rule: add the specifier

phrase

SYN

VAL

[
COMPS 〈〉
SPR 〈〉

]

SEM


IND x

RESTR

〈[
PRED udef q
IND x

]
⊕ A

〉




→ H


SYN


CAT noun

VAL

[
COMPS 〈〉
SPR 〈 . . . 〉

]
SEM

[
RESTR

〈
A
〉]


And we have to get the handle right 8

basic-bare-np-phrase

ª The type in the matrix is basic-bare-np-phrase

ª The predicate is added in C-CONT

ª Iff the specifier is marked as OPT +

(De)composition in DELPH-IN MRS 9

Decomposed Words

ª Add two predicates for a single word

â use LKEYS.KEYREL for the first
â use LKEYS.ALTKEYREL for the second

(De)composition in DELPH-IN MRS 10

Pronouns

ª Many languages (all)? have demonstrative modifiers as
well as pronouns

ª We can model the pronouns as decomposed predicates

(1) I like this ball
(2) I like this “this thing”
(3) I like kono tama
(4) I like kore “kono mono”

(De)composition in DELPH-IN MRS 11

Demonstrative Types

Quantifier

. . .SomeAnyAllWhatDemonstrative

Distal

RemoteMedial

Proximal

(De)composition in DELPH-IN MRS 12

Universal Names

quant_q_rel := predsort.
demon_q_rel := quant_q_rel
proximal_q_rel := demon_q_rel.
dist_q_rel := demon_q_rel.
medial_q_rel := dist_q_rel.
remote_q_rel := dist_q_rel.
which_q_rel := quant_q_rel.
all_q_rel := quant_q_rel.
any_q_rel := quant_q_rel.
...

It is almost certainly more complicated than this.

(De)composition in DELPH-IN MRS 13

Head Types

Head

. . .DemonstrativePersonal

3rd2nd1st

1e1i

PlaceTimeEntity

ThingPerson

Do we really need Demonstrative?

(De)composition in DELPH-IN MRS 14

Universal Names

generic_n_rel := predsort.
entity_n_rel := generic_n_rel
person_n_rel := entity_n_rel.
thing_n_rel := entity_n_rel.
time_n_rel := generic_n_rel.
where
place_n_rel := generic_n_rel.
why
reason_n_rel := generic_n_rel.
how
manner_n_rel := generic_n_rel.

(De)composition in DELPH-IN MRS 15

So how do we build them?

noun+det-lex-item := norm-hook-lex-item &
non-mod-lex-item &

[SYNSEM [LOCAL [CAT [HEAD noun,
VAL [SPR < >, COMPS < >,

SUBJ < >, SPEC < >]],
CONT [RELS <! relation &

[LBL #nh, ARG0 #s],
quant-relation & #det &
[ARG0 #s, RSTR #h]!>,

HCONS <! qeq & [HARG #h,
LARG #nh] !>]],

LKEYS [KEYREL relation,
ALTKEYREL #det]]].

n+det-lex := noun+det-lex-item.

Maybe the label should be quantifier’s label? 16

Maybe the label should be quantifier’s label? 17

lexicon.tdl

kono := determinative-lex &
[STEM < "kono" >,
SYNSEM.LKEYS.KEYREL.PRED "proximal_q_rel"].

sono := determinative-lex &
[STEM < "sono" >,
SYNSEM.LKEYS.KEYREL.PRED "medial_q_rel"].

ano := determinative-lex &
[STEM < "ano" >,
SYNSEM.LKEYS.KEYREL.PRED "remote_q_rel"].

(De)composition in DELPH-IN MRS 18

kore := n+det-lex &
[STEM < "kore" >,
SYNSEM.LKEYS [KEYREL.PRED thing_n_rel,

ALTKEYREL.PRED proximal_q_rel]].

sore := n+det-lex &
[STEM < "sore" >,
SYNSEM.LKEYS [KEYREL.PRED thing_n_rel,

ALTKEYREL.PRED medial_q_rel]].

mono := common-noun-lex &
[STEM < "mono" >,
SYNSEM.LKEYS.KEYREL.PRED thing_n_rel].

(De)composition in DELPH-IN MRS 19

Caveats

ª Really, we should have a different predicate for the word
mono

mono_n_rel := thing_n_rel.

mono := common-noun-lex &
[STEM < "mono" >,
SYNSEM.LKEYS.KEYREL.PRED mono_n_rel].

So we don’t overgenerate: but for now let’s!

ª It’s possible that dem q rel and so forth should be
dem a rel, and we get the quantifier from somewhere
else: can we say this the man?

(De)composition in DELPH-IN MRS 20

Idioms

ª Idioms can be flexible

ª Match them in the semantics

ª Look for at least one element marked [IDIOM +]

ã [IDIOM +] consults with idioms.mtr

â Each rule identifies an idiom
â If the sentence has all the elements accept the

sentence
and mark the idiom?

â Otherwise reject it

(De)composition in DELPH-IN MRS 21

Check out the DELPH-IN Wiki: http://moin.
delph-in.net/JacyIdiom

(De)composition in DELPH-IN MRS 22

