HG7021 Computational Grammars

(De)composition in DELPH-IN MRS

Francis Bond
Division of Linguistics and Multilingual Studies
http://www3.ntu.edu.sg/home/fcbond/
bond@ieee.org

Lecture 7

HG7021

Overview

When do words and predicates get out of sync?

Semantically empty words
Constructions
Decomposed words
ldioms

Boundary issues

Dealing with tokenizers
When to make decisions

Grammar and grammar

(De)composition in DELPH-IN MRS

Outline

Often, the mapping between predicate and word is not
one-to-one

Some words add no predicates:
auxiliary be
Infinitive to

Some constructions add predicates:

compound-rule
pumping rules (N— NP, NP— PP, AdjP— NP, ...)

(De)composition in DELPH-IN MRS 2

> Some words add multiple predicates:

here “this place” (“in this place”)
there “that place” (“in that place”)
where “which place” (“in which place”)

Sometimes multiple predicates combine to form a special
meaning

make note of “note”

play ball “cooperate”

behind schedule “late”

rack one’s brains “think hard”

(De)composition in DELPH-IN MRS 3

Empty Predicates

Our grammars treat some (very common) words as
basically structural: they link other parts together, but add
no predicate themselves.

They pass the hook up and do little else

To generate these

Add them all in every time (ineffecient)
Write trigger rules: add them in when needed

(De)composition in DELPH-IN MRS 4

Constructions

(De)composition in DELPH-IN MRS

Pumping Rules

There are some incomplete phrases, that act as though
there is a missing element:

| want to go home “to my house”

| put it here “In this place”
| like gold “some gold”

| like the rich “the rich people”

We do this with pumping rules:

(De)composition in DELPH-IN MRS 6

Head-Specifier Rule

 phrase

VAL

COMPS
SPR

_>

H

VAL

COMPS
SPR

0
(2])

(De)composition in DELPH-IN MRS

NP Pumping Rule: add the specifier

phrase
COMPS ()
SYN [VAL SPR <>]
'IND X]
SEM RESTR PRED udef_q@A
IND X
i 'CAT noun
SYN COMPS ()
—H VAL SPR (...

SEM_RESTR<A>]

And we have to get the handle right

basic-bare-np-phrase

The type in the matrix is basic-bare-np-phrase
The predicate is added in C-CONT

Iff the specifier is marked as OPT +

(De)composition in DELPH-IN MRS

Decomposed Words

Add two predicates for a single word

use LKEYS.KEYREL for the first
use LKEYS.ALTKEYREL for the second

(De)composition in DELPH-IN MRS

10

Pronouns

Many languages (all)? have demonstrative modifiers as
well as pronouns

We can model the pronouns as decomposed predicates

(1) | like this ball

(2) | like this “this thing”
(3) | like kono tama

(4) |like kore “kono mono”

(De)composition in DELPH-IN MRS 11

Demonstrative Types

Quantifier
Demonm .
/\

Proximal Distal
/\

Medial Remote

(De)composition in DELPH-IN MRS

12

Universal Names

quant_g rel := predsort.
demon_g rel := quant_g rel
proximal_qg_rel := demon_qg rel.
dist_g rel := demon_qg rel.
medlial_qg rel := dist_g_rel.
remote_qg_rel := dist_qg rel.
which_g rel := quant_qg_rel.
all_g rel := quant_qg rel.
any_qg rel := quant_qg rel.

It is almost certainly more complicated than this.

(De)composition in DELPH-IN MRS

Head Types

Head
W\
Entity Time Place Personal Demonstrative .
/\ /N
Person Thing 1st 2nd 3rd
N
11 1e

Do we really need Demonstrative?

(De)composition in DELPH-IN MRS 14

Universal Names

generic_n_rel := predsort.
entity_n_rel := generic_n_rel
person_n_rel := entity_n_rel.
thing_n_rel := entity_n_rel.
time n rel := generic_n_rel.
where

place_n_rel := generic_n_rel.
why

reason_n_rel := generic_n_rel.

how
manner_n_rel := generic_n_rel.

(De)composition in DELPH-IN MRS

15

So how do we build them?

noun+det—-lex—item := norm-hook-lex—-item &
non-mod-lex—1item &
[SYNSEM [LOCAL [CAT [HEAD noun,
VAL [SPR < >, COMPS < >,
SUBJ < >, SPEC < > 11,
CONT [RELS <! relation &
[LBL #nh, ARGO #s],
quant-relation & #det &
[ARGO #s, RSTR #h]!>,
HCONS <! geqg & [HARG #h,
LARG #nh] !'> 17,
LKEYS [KEYREL relation,
ALTKEYREL #det]]7.

n+det-lex := nountdet—-lex—item.

Maybe the label should be quantifier’s label? 16

Maybe the label should be quantifier’s label?

17

lexicon.tdl

kono := determinative—-lex &
[STEM < "kono" >,
SYNSEM.LKEYS.KEYREL.PRED

sono := determinative—-lex &
[STEM < "sono" >,
SYNSEM.LKEYS.KEYREL.PRED

ano := determinative—-lex &
[STEM < "ano" >,
SYNSEM.LKEYS.KEYREL.PRED

"proximal_qg rel"

"medial_qg_rel"].

"remote_qg_rel" 1.

l.

(De)composition in DELPH-IN MRS

18

kore := n+det-lex &
[STEM < "kore" >,
SYNSEM.LKEYS [KEYREL.PRED thing_ n_rel,
ALTKEYREL.PRED proximal_qg_ rel]].

sore := n+det-lex &
[STEM < "sore" >,
SYNSEM.LKEYS [KEYREL.PRED thing_n_rel,
ALTKEYREL.PRED medial_qg rel]].

mono := common—-noun-—-lex &
[STEM < "mono" >,
SYNSEM.LKEYS.KEYREL.PRED thing n_rel].

(De)composition in DELPH-IN MRS 19

Caveats

Really, we should have a different predicate for the word
mono

mono_n_rel := thing_n_rel.

mono := common—-noun-—-lex &
[STEM < "mono" >,
SYNSEM.LKEYS.KEYREL.PRED mono _n_rel].

So we don’t overgenerate: but for now let’s!

It's possible that dem_g_rel and so forth should be
dem_a_rel, and we get the quantifier from somewhere
else: can we say this the man?

(De)composition in DELPH-IN MRS 20

Idioms

ldioms can be flexible
Match them in the semantics
Look for at least one element marked [IDIOM +]

| IDIOM +] consults with idioms.mtr

Each rule identifies an idiom

If the sentence has all the elements accept the
sentence

and mark the idiom?

Otherwise reject it

(De)composition in DELPH-IN MRS 21

Check out the DELPH-IN Wiki:
delph—in.net/JacyIdiom

http://moin.

(De)composition in DELPH-IN MRS

22

