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Research Objectives

• To develop/advance (unsupervised/supervised) baseline methods

for MRD-based WSD (esp. for the Hinoki Sensebank)

• To apply/extend dictionary definition-based WSD methods over

Japanese data

• To explore the use of sense-disambiguated ontologies in definition-

based WSD
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Japanese Semantic Lexicon (Lexeed)

• The most familiar words of Japanese

⋆ Familiarity is estimated by psychological experiments

⋆ All words with a familiarity ≥ 5.0 (1 . . . 7)

• 28,000 words and 47,000 senses

• Covers 75% of tokens in a typical newspaper

• Rewritten so definition sentences use only basic words (and function

words)

→ closed-world lexicon
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Lexeed Dictionary – Dog1

Index 犬 inu

Pos noun

Familiarity 6.53 [1–7] Frequency 67

Sense 1



Definition 犬 科 の 食肉 動物 。
A carnivorous animal of the canidae family .

家畜 として 古く から 飼わ れ 、 飼い主 に 忠実 。
Kept domestically from ancient times; loyal to their owners.

Example 犬 を 飼っ て いる 家 が 多い 。
There are many households that keep dogs.
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Hinoki Sensebank

• All content words in definition and example sentences 5-way sense

annotated (and resolved to majority sense)

• All definitions and example sentences treebanked using JACY

• Ontology induced from sensebank based on parsed definition

sentences, with relation types hyper/hyponyms, domains,

meronyms and synonyms

• Senses also linked to GoiTaikei and WordNet
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Hinoki Sensebank – Dog1

Index 犬 inu

Pos noun Lexical-Type noun-lex

Familiarity 6.53 [1–7] Frequency 67 Entropy 0.03

Sense 1

0.99



Definition 犬 1 科 の 食肉 1 動物 1 。
A carnivorous animal of the canidae family .

家畜 1 として 古く 1 から 飼わ 1 れ 、 飼い主 1 に 忠実 1 。
Kept domestically from ancient times; loyal to their owners.

Example 犬 1 を 飼っ1 て いる 家 3 が 多い 1 。
There are many households that keep dogs.

Hypernym 動物 1 dōbutsu “animal”

Sem. Class ⟨537:beast⟩ (⊂ ⟨535:animal⟩)
WordNet dog1
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Lexeed Dictionary – Dog2

Index 犬 inu

Pos noun

Familiarity 6.53 [1–7]

Sense 2



Definition 警察 など の 回し者 。 スパイ 。
A secret agent for the police, etc. A spy.

Example 警察 の 犬 2 だけ に は 成り たく ない 。
I want to turn into anything but a police spy.
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Hinoki Sensebank – Dog2

Index 犬 inu

Pos noun Lexical-Type noun-lex

Familiarity 6.53 [1–7] Frequency 67 Entropy 0.03

Sense 2

0.01



Definition 警察 1 など の 回し者 1 。 スパイ 1 。
A secret agent for the police, etc. A spy.

Example 警察 1 の 犬 2 だけ に は 成り 4 たく ない 。
I want to turn into anything but a police spy.

Hypernym 回し者 1 mawashimono “secret agent”

Synonym スパイ 1 supai “spy”

Sem. Class ⟨317:spy⟩ (⊂ ⟨317:spy⟩)
WordNet spy1





NICT 28/12/2007



8 MRD-based Word Sense Disambiguation: Extensions and Applications

OK, OK ... but why MRD-based WSD?

• MRD-based WSD shown to provide very high unsupervised baseline

(e.g. Lesk algorithm in Senseval tasks)

• Suitable for all words WSD tasks (no data bottleneck)

• MRDs have (relatively) high availability compared to sensebanked

data

• MRD-based WSD is easily adaptable to new MRDs, languages
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Basic Algorithm (Lesk++)

for each word wi in context w = w1w2...wn do
for each sense si,j and definition di,j of wi do

score(si,j) = similarity(w \ wi,di,j)
end for
s∗i = argmaxj score(si,j)

end for
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Original Lesk (Lesk, 1986)

• similarity = simple set intersection

• Example:

⋆ Input: おとなしい 犬 を 飼い たい → { おとなしい ,飼う }
⋆ dog1: { 犬 ,食肉 ,動物 ,家畜 ,古い ,飼う ,飼い主 ,忠実 }

similarity(Input, dog1) = 1

⋆ dog2: { 警察 ,回し者 ,スパイ }

similarity(Input, dog2) = 0
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Extended Lesk (Banerjee and Pedersen, 2003)

• similarity defined relative to each context word wj and

RELPAIRS, e.g. {⟨def , def ⟩, ⟨hype, hype⟩, ⟨hypo, hypo⟩}:

similarity(wj, wi) =
∑

⟨Rm,Rn⟩∈RELPAIRS

score(Rm(wi), Rn(wj))

• score based on square of length of longest substring match

• Only ever compare definitions to definitions (never directly to

context)
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• Example:

⋆ Input: おとなしい 犬 を 飼い たい → { おとなしい ,飼う }
⋆ dog1:

score(def (nice1), def (dog1)) + score(hype(nice1), hype(dog1))+

score(hypo(nice1), hypo(dog1)) + score(def (nice2), def (dog1)) + ...+

score(def (keep1), def (dog1)) + score(hype(keep1), hype(dog1))+

score(def (keep2), def (dog1)) + ...

⋆ dog2: { 警察 ,回し者 ,スパイ }
score(def (nice1), def (dog2)) + score(hype(nice1), hype(dog2))+

score(hypo(nice1), hypo(dog2)) + score(def (nice2), def (dog2)) + ...+

score(def (keep1), def (dog2)) + score(hype(keep1), hype(dog2))+

score(def (keep2), def (dog2)) + ...
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Our Method

• similarity defined based on Dice coefficient:

simDICE(A,B) =
2 |A ∩B|
|A|+ |B|
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• Similarly to basic Lesk, compare context words with definitions:

⋆ Input: おとなしい 犬 を 飼い たい → { おとなしい ,飼う }
⋆ dog1: { 犬 ,食肉 ,動物 ,家畜 ,古い ,飼う ,飼い主 ,忠実 }

similarity(Input, dog1) =
2

10

⋆ dog2: { 警察 ,回し者 ,スパイ }

similarity(Input,dog2) =
0

5
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• Similarly to Banerjee and Pedersen, 2003, expand definitions based

on ontological relations, but into single expanded term vector (c.f.

query expansion)

⋆ dog1+hype: { 犬 ,食肉 ,動物 ,家畜 ,古い ,飼う ,飼い主 ,忠実 ,生
物 ,大きな ,区分 }

similarity(Input, dog1) =
2

13

⋆ dog2+hype: { 警察 ,回し者 ,スパイ }

similarity(Input,dog2) =
0

5
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• Different to Banerjee and Pedersen, 2003, expand out the definition

to include the definition of each content word (context-sensitive or

context-insensitive)

• Example (sense-sensitive):

⋆ dog1+hype: { 犬 ,犬 ,食肉 , ...,食肉 ,猛獣 ,他 , ...,動物 ,,生物 ,大
きな , ......,忠実 }
...

• Example (sense-insensitive):

⋆ dog1+hype: { 犬 ,犬 ,食肉 , ...,警察 ,回し者 ,スパイ ,食肉 ,猛獣 ,

他 , ...,食用 ,する , ...,動物 , ...,忠実 }
...
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The Nitty-gritty Details

• Ontological relations: hypernymy, hyponymy and synonymy (only)

• Token representation: characters vs. words

• Evaluate in terms of simple accuracy (100%-recall method)
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Outline of the Datasets

• Training data: Hinoki definition sentences

• Test datasets:

⋆ Hinoki example sentences

⋆ Senseval-2 Japanese dictionary task

• For all three datasets, each open-class word is multiply sense-

annotated, and sense-arbitrated relative to the majority annotation
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Results over the Hinoki Example Sentences
Sense-sensitive Sense-insensitive

Word Char Word Char

unsupervised (random) baseline: 0.527

supervised (first-sense) baseline: 0.633

Banerjee and Pedersen, 2003 0.648

simple 0.469 0.524 0.469 0.524

+syn 0.560 0.538 0.548 0.543

+hyper 0.559 0.539 0.548 0.537

+hypo 0.656 0.644 0.655 0.644
+hyper +hypo 0.648 0.641 0.629 0.630

+syn +hyper +hypo 0.650 0.633 0.627 0.623

+extdef 0.489 0.527 0.489 0.527

+extdef +syn 0.577 0.560 0.551 0.543

+extdef +hyper 0.577 0.563 0.551 0.542

+extdef +hypo 0.653 0.646 0.649 0.644
+extdef +hyper +hypo 0.683 0.671 0.631 0.627

+extdef +syn +hyper +hypo 0.680 0.661 0.632 0.621

Average 0.579 0.576 0.560 0.566
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Summary of Results over the Example Sentences

• Definition expansion via the ontology produces significant

performance gains (esp. hyponmys)

• Definition-level expansion has little impact

• Sense information helps out a bit (≈4% absolute increment)

• Little difference between character and word tokenisation (other

than for most basic methods)

• Best results better than Banerjee and Pedersen, 2003 and first-sense

baseline
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Breakdown across Word Classes
All Noun Verb Adj Adv

unsupervised (random) baseline: 0.527 0.641 0.252 0.415 0.564

simple 0.469 0.620 0.145 0.294 0.388

+syn 0.560 0.679 0.281 0.420 0.609

+hyper 0.559 0.679 0.281 0.384 0.609

+hypo 0.656 0.747 0.432 0.571 0.645

+hyper +hypo 0.648 0.739 0.423 0.553 0.653
Word

+syn +hyper +hypo 0.650 0.743 0.419 0.615 0.665

+extdef 0.489 0.630 0.179 0.306 0.451

+extdef +syn 0.577 0.717 0.282 0.315 0.590

+extdef +hyper 0.577 0.717 0.282 0.380 0.590

+extdef +hypo 0.653 0.741 0.434 0.584 0.664

+extdef +hyper +hypo 0.683 0.789 0.429 0.574 0.644

+extdef +syn +hyper +hypo 0.680 0.785 0.428 0.619 0.659
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Summary of Results for different POS

• Verbs (as always) a hard nut, but also the word class that benefits

most from the proposed method

• Hyponyms particularly effective for verb and adjective WSD
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Results over Senseval-2
Sense-sensitive Sense-insensitive

Word Char Word Char

Unsupervised (random) baseline: 0.310

Supervised (first-sense) baseline: 0.577

simple 0.404 0.373 0.404 0.341

+extdef 0.420 0.362 0.420 0.329

+hyper 0.441 0.450 0.425 0.426

+hypo 0.568 0.577 0.616 0.610

+hyper +hypo 0.585 0.591 0.596 0.608

+extdef +hyper 0.451 0.484 0.371 0.432

+extdef +hypo 0.616 0.630 0.610 0.622
+extdef +hyper +hypo 0.624 0.624 0.593 0.602

Average 0.514 0.511 0.504 0.496
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Summary of Results over Senseval-2

• Same basic trends as for the Hinoki example sentence data (but

less increment for sense-sensitivity)

• Points of comparison:

⋆ best result (0.630) ≡ E.R.R. of 11.1%, c.f. E.R.R. of 21.9%

for the best of the (supervised) WSD systems in the original

Senseval-2 task
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Miscellaneous Reflections

• Ontology has a big impact on results (esp. homonyms)

• Impact of sense-sensitivity (i.e. large-scale sense annotation) slight

but appreciable

• Little to separate characters from words

• We blurr the boundary between unsupervised and supervised WSD

somewhat in using the sense annotations in the definition sentences
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Other Miscellaneous Results

• Tried segment weighting (tf·idf), but it had very little impact

• Tried segment bigrams vs. unigrams, but unigrams tended to work

better

• Tried stop word filtering (specific to dictionary domain), but it had

little impact

• Tried applying POS constraints, but they had little impact on

results
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Applications of WSD

• WSD is all well and good, but ...

• Murmurings in recent years in the WSD community about what’s

it all about ...

• Notable successes of WSD in broader context: SMT, Penn

Treebank parsing

• Applications of Hinoki WSD:

⋆ parse selection (Fujita et al., 2007)

⋆ context-sensitive glossing (Yap and Baldwin, 2007)
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Imagine ...
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The Rikai Solution
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The Rikai + WSD Solution
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Context-sensitive Glossing

• On-line glossing an effective tool for people with incomplete

knowledge of the language who can piece together an interpretation

based on linguistic fragments

• BUT current online applications suffer from lack of context

sensitivity

• Our solution:

1. WSD the target text

2. map the Japanese sense predictions onto English glosses via a

dictionary alignment
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Alignment Process

• Use EDICT as a pivot to:

1. match Lexeed and WordNet head words

2. match Lexeed and WordNet definitions
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Reflections on Glossing

• Nice application of WSD in real-world context (with real-world

users)

• Most effort to date has been expended on dictionary alignment

• Novel application where:

⋆ best-1 sense disambiguation not necessarily required (appropriate

balance of precision vs. recall, given “expert” post-editting)

⋆ perfect dictionary sense alignment not necessary

• Will become considerably easier with Japanese WordNet (please,

please, please) ...
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Conclusion

• Development of simple baseline WSD methods/results for the

Lexeed data to calibrate future experiments against

• Finding that ontological semantics in dictionary definitions leads to

significant increments in WSD performance

• Ongoing exploration of applications of WSD in glossing context
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