It Makes Sense [2010]

IT MAKES SENSE

A Wide-Coverage Word Sense Disambiguation System for Free Text

Zhi Zhong & Hwee Tou Ng

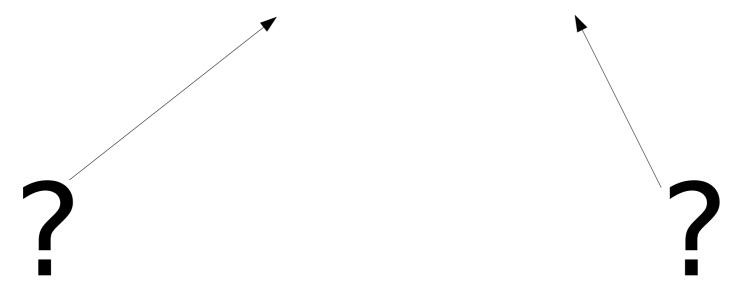
Zhong Zhi

- Mysterious researcher
- Email: hongzhi@comp.nus.edu.sg
- Should I drop her (him?) an email and ask "who are you?"

Hwee Tou NG

- Provost's Chair Professor
- Department of Computer Science, School of Computing, National University of Singapore

- Email: nght@comp.nus.edu.sg
- Home Page: http://www.comp.nus.edu.sg/~nght



• There is a cup on the table.

There is a <u>cup</u> on the <u>table</u>.

There is a <u>cup</u> on the <u>table</u>.

```
    (N) a small open container usually used for drinking; usually has a handle
    (N) the hole (or metal container in the hole) on a golf green
    3)....
```

```
    (N) a set of data arranged in rows and columns
    (N) a piece of furniture having a smooth flat top that is usually supported by one or more vertical legs
    ....
```

There is a <u>cup</u> on the <u>table</u>.

```
1) (N) a small open
  container usually used
  for drinking; usually
  has a handle
```

2) (N) the hole (or metal container in the hole) on a golf green 3)....

```
1) (N) a set of data arranged in rows and columns
```

```
2) (N) a piece of
furniture having a
smooth flat top that is
usually supported by
one or more vertical
legs
```

3)....

Solution?

How does Hwee Tou's group solve this problem?

Intuition

- Collect sense-annotated text
- Extract features
- Use machine learning algorithms to learn the relation between a word features and its tagged sense
- With a given word and its features, one can use the learnt function to predict the relevant sense

System Architecture

- Three steps
 - Pre-processing
 - To get auto-annotated text
 - Feature & Instance Extraction
 - Extract word features (POS, surrounding words, local collocations)
 - Classification
 - SVM to learn the mapping between words' features and senses

Preprocessing

- Detect sentence boundaries in a raw input text with a sentence splitter.
- Tokenize the split sentences with a tokenizer
- POS tagging
- Lemmatize each words

Preprocessing

 I don't think a computer can understand human language. Does it make any sense?

Sentence segmentation

 I don't think a computer can understand human language. Does it make any sense?

=>

S1: I don't think a computer can understand human language.

S2: Does it make any sense?

Tokenization

```
    S1: I | do | n't | think | a | computer | can | understand | human language | .
    S2: Does | it | make | any | sense
```


POS Tagging

- S1: I/PRP | do/VBP | n't/RB | think/VB | a/DT | computer/NN | can/MD | understand/VB | human/JJ language/NN | ./.
- S2: Does/NNP | it/PRP | make/VB | any/DT | sense/NN | ?/.

Lemmatization

- S1: I/PRP | do/VBP | n't/RB |
 think/VB | a/DT | computer/NN |
 can/MD | understand/VB | human/JJ
 language/NN | ./.
- S2: **Do/NNP** | it/PRP | make/VB | any/DT | sense/NN | ?/.

- Feature 1: POS tags of surrounding words
 - Three words to the left
 - Three words to the right
 - The target word itself

- Feature 2: Surrounding words
 - Can be in the current sentence or immediately adjacent sentences
 - Stop words, words without alphabetic characters (punctuation, symbols, numbers, etc.) are removed
 - E.g:
 - All possible neighbours of the word "NLP" => [human, computer, algorithm, machine translation]
 - Context: [computer, algorithm, computer]
 - Feature vector: [0,1,1,0]

- Feature 3: Local Collocations
 - Use 11 local collocations:
 - $-C_{-2,-2},C_{-1,-1},C_{1,1},C_{2,2},C_{-2,-1},C_{-1,1},$
 - $-C_{1,2},C_{-3,-1},C_{-2,1},C_{-1,2},C_{1,3}$
 - $C_{i,j}$ = ordered sequence of words in the same sentence of word w (at 0)
 - i/j = starting/ending position
 - Negative/positive offset = Left/right

There	is	a	cup	on	the	table	
-3	-2	-1	0	1	2	3	4

- C_{-2,-2}="is"
- C_{-2,-1}="is a"
- $C_{3,4}$ ="table ."

Classification

- Each word has a classifier (sense predictor)
- The models are trained using supervised learning methods (SVM).
- Given a word, if its classifier exists, the results as a set of ordered pairs <sense;, prob; > will be returned
- If the word classifier doesn't exist, return predefined default sense.
- Else return "U"

All-Words Tasks

- The performance of WSD system greatly depends on the size of training data used.
- Q: Where do they find big senseannotated data?
- A: SEMCOR + DSO corpus + autogenerated from parallel texts

- Used six English-Chinese parallel corpora (from Linguistic Data Consortium - LDC)
 - Hong Kong Hansards
 - Hong Kong News
 - Hong Kong Laws
 - Sinorama
 - Xinhua News
 - English translation of Chinese Treebank

- Perform tokenization on the English text with Penn TreeBank tokenizer
- Perform Chinese word segmentation on the Chinese text (Low et al. 2005)
- Perform word alignment using GIZA++
- Assign Chinese translations to each sense of an English word w.

- Pick the occurrences of w which are aligned to its chosen Chinese translations in the word alignment output of GIZA++
- Identify the senses of the selected occurrences of w by referring to their aligned Chinese translations.

- Only extract top 60% most frequently occurring polysemous content words in Brown Corpus
 - 730 nouns
 - 190 verbs
 - 326 adjectives
 - 28 adverbs

- For each of the top 60% nouns & adjectives, maximum of 1,000 training examples are gathered from parallel texts.
- For each of the top 60% verbs, not more than 500 examples from parallel text and not more than 500 examples from DSO corpus are collected.
- All data from SEMCOR

- More than 21,000 classification models was generated.
- On average, each word has 38 training instances
- Total size of the models is ~200 MB

POS	NOUN	VERB	ADJ	ADV
# of types	11,445	4,705	5,129	28

Evaluation

	SensEval-2	SensEval-3
IMS	65.3%	72.6%
Rank 1 System	64.2%	72.9%
Rank 2 System	63.8%	72.6%
Most frequent sense	47.6%	55.2%

Conclusion

- Give much better compare to selecting most frequent sense.
- State-of-the-art WSD system
- Licensed in GPL?
 - Available for research
 - NOT for commercial use

Used Tools

- OpenNLP toolkit
 - Sentence splitter & POS tagger
 - http://opennlp.sourceforge.net
- Penn TreeBank tokenizer
 - http://www.cis.upenn.edu/~treebank/tokenizer.sed
- jWordnet (Lemmatization)
 - http://jwordnet.sourceforge.net
- Machine learning
 - LIBLINEAR is used by default
 - WEKA, LIBSVM & MaxEnt are also supported.

Want more?

- Yes
- No

Thank you

Q & A

Yes? Machine Learning

- How do machines learn?
 - Are fed with data
 - Detect patterns from data
- Type of learning
 - Supervised learning
 - Input & output are provided
 - Unsupervised learning
 - Variations of clustering (grouping)

Unsupervised Learning

- We collect a lot of data
- The machine will compare the data instances and group them into groups or organise them on a space.

Supervised Learning

We all know this

$$y=f(x)$$

- Given a x and a function f, we can find y
- What if we have x, but function f
 is too complicated to define or we
 don't have it?
- Give up!

Nah, just kidding

- We may collect data instead
- $\cdot < x1, y1>, < x2, y2>, < x3, y3> ...$
- Try to fit a known function into this dataset
- We have a $g(x) \sim f(x)$
- Use g(x) instead of f(x)

Supervised Learning

- So in order to use most of the stateof-the-art supervised learning methods, you need to:
 - Collect data
 - know the <u>form</u> of the inputs and outputs
 - Convert the collected data into that form
 - Find a machine learning tool and use it (or make one by yourself)

Some suggestions

- Words as input
 - Lexicon: [dog, cat, fish, rabbit]
 - Dog = [1,0,0,0] or 1
 - Fish = [0,0,1,0] or 3
- Categorical output
 - LUK = [yes, no, unknown]
 - Yes = [1,0,0] or 1
 - No = [0,1,0] or 2
 - Unknown = [0,0,1] or 3
- Confident as output
 - Real number value between 0 and 1

Thank you

Q & A

Questions

- When was the paper published?
 - What did they react to?
- Why did they use SVM?
- Why did they use WordNet 1.7.1?
- How can we make this better?

Thank you

