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Objective of WSD

The task of Word Sense Disambiguation (WSD) is to automatically
choose the intended sense of a given target word w in context.

Graph-based WSD exploited the interrelations between senses
underlying the graph representation of a particular Lexical Knowledge
Base(LKB).
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Graph-based WSD

From LKB, con-
struct the graph
representation.

Run ranking al-
gorithm over the

constructed graph

Choose the high-
est ranked sense.

done
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Lexical Knowledge Based (LKB)

LKB is basicaly an undirected graph G = (V ,E )

each node in V = vi represents a concept.

each undirected edge ei ,j in E represents a relation between concept
vi and vj .
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LKB-example

coach#n1 : coach, manager, handler ((sports) someone in charge of
training an athlete or a team)

coach#n2 : coach, private instructor, tutor (a person who gives
private instruction (as in singing, acting, etc.))

coach#n5 : bus, autobus, coach, charabanc, double-decker, jitney,
motorbus, motorcoach, omnibus, passenger vehicle (a vehicle carrying
many passengers; used for public transport)
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LKB-example

”Our fleet comprises coaches from 35 to 58 seats.”

coach

coach#n5

coach#n2

fleet#n2

seat#n1

coach#n1

trainer#n1

sports#n1

management#n1 teacher#n1

holonym

holonym

domain

derivation
hyperonym hyperonym
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Lexical Knowledge Based (LKB)

MCR16+Xwn : WordNet 1.6 synsets and relations; WordNet 2.0
relations; eXtended WordNet relations.

WNet17 + Xwn : WordNet 1.7 synsets and relations plus the
exTended WordNet relations.

WNet30+gloss : WordNet 3.0 synsets and relations.
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Traditional PageRank (Brin and Page 1998)

Intuition: A node vi will vote for vj when there is an link from vi to
vj , which will increase the rank of vj .

The score vector will be updated iteratively until convergency or
reaching max number of iterations.

At each step, the score vector of a graph G can be computed as:

Pr = cMPr + (1− c)v

Let di be the outdegree of a vertice vi . M is a N × N matrix where

Mij =
1

di
. v is a N × 1 vector where each element is

1

N
, and c is a

scaling constant. Accordingly, the neighboring nodes of these favored
ones will also ranked relatively higher than others.
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Traditional PageRank - problem

Tranditional PageRank initialize v unifomly. If running it over the
whole graph, the highest ranked senses are independent of context.

Solution 1: construct a subgraph of senses that are most relevant to
context words.

Solution 2: Personalizing PageRank.
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Traditional PageRank over Subgraph(Agirre and Soroa,
2008)

GD :Knowledge base.
Concepti : The set of concepts of context word wi .

1 For each word vi in the concept set Conceptsi , use breath-first-search
to find minimum distance path between node vi and concepts linked
with the rest of the context words, i.e. the set of path including all
the vj ∈ ∪j 6=iConceptsj . Denote the path as mdpvi

2 Construct GD with all the nodes incluede in mdpvi ;

3 Run traditional PageRank over GD .
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Persoanlizing PageRank

v Since Traditional PageRank is unifomly initialized, it has to work
with a subgraph. I

Solutions: We can favor some certain type of nodes by assigning
them more initial mass.
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Personalizing PageRank

Steps:

1 Distribute the probability mass over the nodes of words including
both the context words and target words.

2 Update the score vector iterateively using exactly the same formula as
traditional PageRank.
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Personalizing PageRank-example

”Our fleet comprises coaches from 35 to 58 seats.”

coach. . . comprise fleet seat. . .

coach#n5

coach#n2

fleet#n2

seat#n1

coach#n1

trainer#n1

sports#n1

management#n1 teacher#n1

comprise#n1
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Personalizing PageRank-Problem

Problem: if competing word senses are related with each other, they
could be reinforced by each other.

Solution: concentrate the initial probability mass in words
surrounding target word.
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Personalizing PageRank-w2w-example

”Our fleet comprises coaches from 35 to 58 seats.”

coach. . . comprise fleet seat. . .

coach#n5

coach#n2

fleet#n2

seat#n1

coach#n1

trainer#n1

sports#n1

management#n1 teacher#n1

comprise#n1
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Performance of Personalizing Pagerank

Senseval-2 dataset

LKB Method All N V Adj. Adv.

MCR16 + Xwn Ppr 51.1 64.9 38.1 57.4 47.5
MCR16 + Xwn Ppr w2w 53.3 64.5 38.6 58.3 38.1
MCR16 + Xwn Spr 52.7 64.8 35.3 56.8 50.2

WNet17 + Xwn Ppr 56.8 71.1 33.4 55.9 67.1
WNet17 + Xwn Ppr w2w 58.6 70.4 38.9 58.3 70.1
WNet17 + Xwn Spr 56.7 66.8 37.7 57.6 70.8
WNet30 + gloss Ppr 53.5 70.0 28.6 53.9 55.1
WNet30 + gloss Ppr w2w 55.8 71.9 34.4 53.8 57.5
WNet30 + gloss Spr 54.8 68.9 35.1 55.2 56.5

MFS 60.1 71.2 39.0 61.1 75.4
SMUaw 68.6 78.0 52.9 69.9 81.7

Table: Results (recall) on Senseval-2 dataset
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Performance of Personalizing Pagerank

Senseval-3 dataset

LKB Method All N V Adj. Adv.

MCR16 + Xwn Ppr 54.3 60.9 45.4 56.5 92.9
MCR16 + Xwn Ppr w2w 55.8 63.2 46.2 57.5 92.9
MCR16 + Xwn Static 53.7 59.5 45.0 57.8 92.9
WNet17 + Xwn Ppr 56.1 62.6 46.0 60.8 92.9
WNet17 + Xwn Ppr w2w 57.4 64.1 46.9 62.6 92.9
WNet17 + Xwn Spr 56.20 61.6 47.3 61.8 92.9
WNet30 + gloss Ppr 48.5 52.2 41.5 54.2 78.6
WNet30 + gloss Ppr w2w 51.6 59.0 40.2 57.2 78.6
WNet30 + gloss Spr 45.4 54.1 31.4 52.5 78.6

MFS 62.3 69.3 53.6 63.7 92.9
GAMBL 65.2 70.8 59.3 65.3 100

Table: Results (recall) on Senseval-3 dataset
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Performance of Personalizing Pagerank

Senseval-3 dataset

Method Time

Ppr 26m46
Spr 119m7
Ppr w2w 164m4

Table: Elapsed time (in minutes) on Senseval-2 dataset
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End

Thanks.

Ma Yukun (NTU) WSD via Personalizing Pagerank September 12, 2014 21 / 21


	Graph-based word sense disambiguation
	Traditional PageRank
	Persoanlizing PageRank

