Graph Based Word Sense Disambiguation

Ma Yukun

Nanyang Technological University

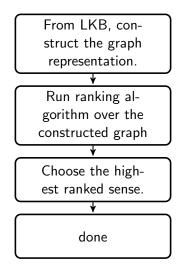
mayu001@e.netu.edu.sg

September 12, 2014

1 Graph-based word sense disambiguation

2 Traditional PageRank

- The task of Word Sense Disambiguation (WSD) is to automatically choose the intended sense of a given target word w in context.
- Graph-based WSD exploited the interrelations between senses underlying the graph representation of a particular Lexical Knowledge Base(LKB).

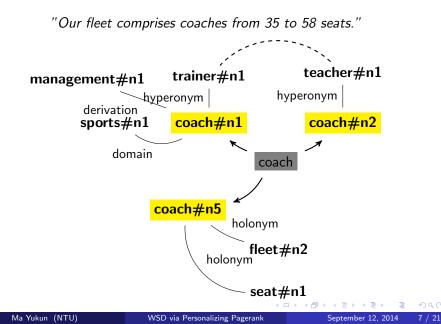


Ma Yukun (NTU)

LKB is basicaly an undirected graph G = (V, E)

- each node in $V = v_i$ represents a concept.
- each undirected edge $e_{i,j}$ in E represents a relation between concept v_i and v_j .

- coach#n1: coach, manager, handler ((sports) someone in charge of training an athlete or a team)
- coach#n2: coach, private instructor, tutor (a person who gives private instruction (as in singing, acting, etc.))
- coach#n5: bus, autobus, coach, charabanc, double-decker, jitney, motorbus, motorcoach, omnibus, passenger vehicle (a vehicle carrying many passengers; used for public transport)



- MCR16+Xwn : WordNet 1.6 synsets and relations; WordNet 2.0 relations; eXtended WordNet relations.
- WNet17 + Xwn : WordNet 1.7 synsets and relations plus the exTended WordNet relations.
- WNet30+gloss : WordNet 3.0 synsets and relations.

Traditional PageRank (Brin and Page 1998)

- Intuition: A node v_i will vote for v_j when there is an link from v_i to v_j, which will increase the rank of v_j.
- The score vector will be updated iteratively until convergency or reaching max number of iterations.
- At each step, the score vector of a graph G can be computed as:

$$\mathbf{Pr} = cM\mathbf{Pr} + (1-c)\mathbf{v}$$

Let d_i be the outdegree of a vertice v_i . M is a $N \times N$ matrix where $M_{ij} = \frac{1}{d_i}$. v is a $N \times 1$ vector where each element is $\frac{1}{N}$, and c is a scaling constant. Accordingly, the neighboring nodes of these favored ones will also ranked relatively higher than others.

- Tranditional PageRank initialize v unifomly. If running it over the whole graph, the highest ranked senses are independent of context.
- Solution 1: construct a subgraph of senses that are most relevant to context words.
- Solution 2: Personalizing PageRank.

G_D:Knowledge base.

*Concept*_{*i*}: The set of concepts of context word w_i .

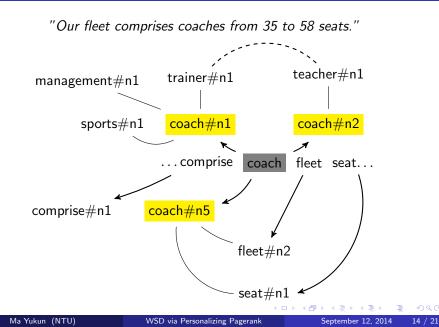
- For each word v_i in the concept set Concepts_i, use breath-first-search to find minimum distance path between node v_i and concepts linked with the rest of the context words, i.e. the set of path including all the v_j ∈ ∪_{j≠i}Concepts_j. Denote the path as mdp_{v_i}
- 2 Construct G_D with all the nodes incluede in mdp_{v_i} ;
- S Run traditional PageRank over G_D.

- v Since Traditional PageRank is unifomly initialized, it has to work with a subgraph. I
- Solutions: We can favor some certain type of nodes by assigning them more initial mass.

Steps:

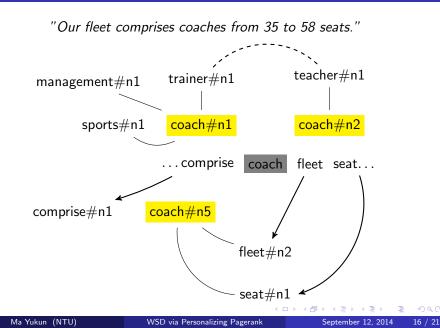
- Distribute the probability mass over the nodes of words including both the context words and target words.
- Opdate the score vector iterateively using exactly the same formula as traditional PageRank.

Personalizing PageRank-example



- **Problem**: if competing word senses are related with each other, they could be reinforced by each other.
- **Solution**: concentrate the initial probability mass in words surrounding target word.

Personalizing PageRank-w2w-example



Performance of Personalizing Pagerank

Senseval-2 uataset						
LKB	Method	All	Ν	V	Adj.	Adv.
MCR16 + Xwn	Ppr	51.1	64.9	38.1	57.4	47.5
MCR16 + Xwn	Ppr_w2w	53.3	64.5	38.6	58.3	38.1
MCR16 + Xwn	Spr	52.7	64.8	35.3	56.8	50.2
WNet17 + Xwn	Ppr	56.8	71.1	33.4	55.9	67.1
WNet17 + Xwn	Ppr_w2w	58.6	70.4	38.9	58.3	70.1
WNet17 + Xwn	Spr	56.7	66.8	37.7	57.6	70.8
WNet30 + gloss	Ppr	53.5	70.0	28.6	53.9	55.1
WNet30 + gloss	Ppr_w2w	55.8	71.9	34.4	53.8	57.5
WNet30 + gloss	Spr	54.8	68.9	35.1	55.2	56.5
MFS		60.1	71.2	39.0	61.1	75.4
SMUaw		68.6	78.0	52.9	69.9	81.7

Senseval-2 dataset

Table: Results (recall) on Senseval-2 dataset

Ma Yukun (NTU)

Performance of Personalizing Pagerank

Senseval-5 dataset						
LKB	Method	All	Ν	V	Adj.	Adv.
MCR16 + Xwn	Ppr	54.3	60.9	45.4	56.5	92.9
MCR16 + Xwn	Ppr_w2w	55.8	63.2	46.2	57.5	92.9
MCR16 + Xwn	Static	53.7	59.5	45.0	57.8	92.9
WNet17 + Xwn	Ppr	56.1	62.6	46.0	60.8	92.9
WNet17 + Xwn	Ppr_w2w	57.4	64.1	46.9	62.6	92.9
WNet17 + Xwn	Spr	56.20	61.6	47.3	61.8	92.9
WNet30 + gloss	Ppr	48.5	52.2	41.5	54.2	78.6
WNet30 + gloss	Ppr_w2w	51.6	59.0	40.2	57.2	78.6
WNet30 + gloss	Spr	45.4	54.1	31.4	52.5	78.6
MFS		62.3	69.3	53.6	63.7	92.9
GAMBL		65.2	70.8	59.3	65.3	100

Senseval-3 dataset

Table: Results (recall) on Senseval-3 dataset

Ma Yukun (NTU)

WSD via Personalizing Pagerank

September 12, 2014

18 / 21

Senseval-3 dataset				
Method	Time			
Ppr	26m46			
Spr	119m7			
Ppr_w2w	164m4			

Table: Elapsed time (in minutes) on Senseval-2 dataset

Eneko Agirre and Aitor Soroa (2009) Personalizing PageRank for Word Sense Disambiguation. Proceedings of the 12th conference of the European chapter of the Association for Computational Linguistics. Athens, Greece.

Eneko Agirre, Oier Lopez de Lacalle and Aitor Soroa (2013) Random Walks for Knowledge-Based Word Sense Disambiguation. Computational Linguistics.

S. Brin and L. Page. 1998. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1-7).

Thanks.

3

▲口> ▲圖> ▲屋> ▲屋>