Gradient HPSG

Berke Şenşekerci

Faculty of Philosophy (Cognitive Science) University of Warsaw

July 9, 2024

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
00000	000000	00000000	000000	00	
Overview					

3 Experiment

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
●0000	000000	00000000	000000	00	
Preliminar	ies				

- The objective of linguistic theories is to model mental grammar.
- To access this mental grammar, linguists often conduct acceptability judgment experiments.

Acceptability judgment experiment

How natural/acceptable do these sentences sound to you?

Sentence	1	2	3	4	5
The waitress doesn't like him.					
Waitress the doesn't like him.					

∜

Sentence	Mean	Median
The waitress doesn't like him.	4.5	5
Waitress the doesn't like him.	1.7	2

∜

Theory: In English NPs, determiners precede their nouns.

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
O●OOO	000000	00000000	000000	00	
Problem					

Problem: Transfer from experimental data to theory

- Most grammar frameworks assume that grammaticality is binary.
- Judgment data rarely exhibits a binary division (Keller 2000; Featherston 2005).
- Ither data is wrong or binary grammaticality assumption is wrong.

Option 1: Data is confounded

- Judgment response = grammar + performance.
- Icradience most likely stems from performance confounds.
- Hence, some idealization is warranted.

Option 2: Binary grammaticality assumption is too strong

- Judgment response = grammar + performance.
- Icradience persists in highly controlled experiments.
- Itence, grammaticality is most likely a gradient notion.

 Introduction
 Gradient HPSG
 Experiment
 Gradient analysis
 Summary
 References

 cooco
 cooc

Assumption: Data is confounded. Some idealization is warranted. **Data (hypothetical)**:

- The waitress doesn't like him. (1–5; Mean: 4.5)
- The waitress doesn't like he. (1-5; Mean: 2.6)
- Waitress the doesn't like him. (1–5; Mean: 1.7)

How to idealize such data?

Idealization 1: Divide in the middle

- The waitress doesn't like him.
- The waitress doesn't like he.
- 🥹 Waitress the doesn't like him.

🧐 Waitress the doesn't like him.

 Introduction
 Gradient HPSG
 Experiment
 Gradient analysis
 Summary
 References

 Adopting Solution 1: Idealization
 contd.

 Theoretical issues

- Different grammars from same data
 - \mathcal{G}_1 (cutoff: 2.5):
 - 5 The waitress doesn't like him.
 - The waitress doesn't like he.
 - 🥹 Waitress the doesn't like him.

 \mathcal{G}_2 (cutoff: 4):

- 🤒 The waitress doesn't like him.
- 🤒 The waitress doesn't like he.
- 🧐 Waitress the doesn't like him.
- 'Judgment response = grammar + performance' does not warrant idealization:
 - Carefully designed experiments minimize the impact of performance-related confounds.
 - Performance-related confounds in AJTs are not well-understood.

Ultimately, idealizing data is riddled with problems and lacks empirical justification.

 Introduction
 Gradient HPSG
 Experiment
 Gradient analysis
 Summary
 References

 Adopting Solution 2: Gradient grammaticality

 Lack of a suitable framework

Assumption: Data is reliable. Idealization is NOT warranted. Data (hypothetical):

- The waitress doesn't like him. (1–5; Mean: 4.5)
- The waitress doesn't like he. (1-5; Mean: 2.6)
- Waitress the doesn't like him. (1–5; Mean: 1.7)

How to analyze such data?

- Probabilistic grammars (e.g. Brew 1995; Riezler 1999; Miyao and Tsujii 2008)
 - Training algorithms assume corpora.
 - Acceptability judgment response \neq frequency (Featherston 2005; Kempen and Harbusch 2008).
- Genuinely gradient frameworks (e.g., Harmonic Grammar, Legendre et al. 1990; Linear-OT, Keller 2000)
 - Not well-formalized
 - OT is not as rich as well-developed frameworks such as HPSG and LFG.

My proposal: A gradient version of HPSG (*work-in-progress*).

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
00000	○●○○○○	00000000	000000	OO	
What we k Cumulativity an	now about g d weights	gradience			

Acceptability of a sentence is a function of (Keller 2000; Featherston 2005):

- The number of constraint violations (and not satisfactions)
- Provide the severity of the violated constraints

Importantly, the violation weights combine linearly (Keller 2000; Hofmeister et al. 2014).

Example

- The waitress doesn't like him. (avg. acceptability = n)
- 2 The waitress doesn't like he. (avg. acceptability = n 1.10)
- Solution: Waitress the doesn't like him. (avg. acceptability = n 1.90)
- **(a)** Waitress the doesn't like he. (avg. acceptability \simeq n (1.90 + 1.10))
- Solution Waitress the doesn't like boss the. (avg. acceptability $\approx n (1.90 + 1.90)$)

 Introduction
 Gradient HPSG
 Experiment
 Gradient analysis
 Summary
 References

 000000
 0000000
 0000000
 0000000
 0000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</td

These empirical observations led to the development of frameworks (e.g., *Linear Optimality Theory*) where:

- Constraints are violable.
- Onstraints are attached numeric weights.
- Grammaticality is the output of a real-valued mathematical function (i.e., Harmony function, Legendre et al. 1990; Keller 2000).

Linear Optimality Theory (Keller 2000)

Grammar is a tuple $\langle C, w \rangle$ where:

- C is the constraint set, i.e., $C = \{C_1, C_2, ..., C_n\}$
- $w(C_i)$ is a function that maps a constraint $C_i \in C$ on its weight w_i .

Grammaticality of a sentence S is computed with harmony function:

$$H(S) = -\sum_{i} w(C_i)v(S, C_i)$$
⁽¹⁾

 $w(C_i)$ = weight of *i*th constraint in grammar $v(S, C_i)$ = violation profile of *i*th constraint in grammar w.r.t. to sentence S

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
00000	000●00	00000000	000000	00	
Towards Motivations	gradience ir	h HPSG			

In Linear-OT, it is formally not clear how $v(S, C_i)$ detects C_i violations in S.

Constraint formulations lack precision:

CASE-MARKING: DPs must be case marked. SUBJ: Clauses must have subjects.

(Grimshaw 1997)

- Prepresentation of S is formally impoverished.
- In conclusion, there is a formal gap between constraints and S.

Why HPSG backbone is better:

- Solid model-theoretic foundations
- Onstraints are precisely defined in a formal language.
- S has a conspicuous formal structure.
- In conclusion, there is a formally established relationship between constraints and S.

Introduction 00000	Gradient HPSG ○○○○●○	nt HPSG Experiment Gradient analysis Summary ●●●			References
Towards	gradience ir	n HPSG			
New RSRL (R	lichter 2004) defini	tions			

Definition 1. Grammar

 Γ is a grammar iff

```
\Gamma is a pair \langle \Sigma, \theta \rangle,
```

 Σ is a septuple $\langle S,\sqsubseteq,S_{max},A,F,R,Ar\rangle_{\text{,}}$

 θ is a set of ordered pairs such that: $\theta = \{ \langle \delta, \mathbf{w} \rangle \mid \delta \in \mathcal{D}_{o}^{\Sigma} \land \mathbf{w} \in \mathbb{R}^{+} \}$

In simpler terms: Each constraint is annotated with a positive real number.

Definition 2. Model

For each grammar $\Gamma = \langle \Sigma, \theta \rangle$, for each Σ interpretation I = $\langle U, \mathbf{r}, S, A, R \rangle$, The modelness degree of I with respect to Γ is:

$$M(I) = -\sum_{i=1} |\mathsf{U} \setminus \mathsf{D}_{I}(\delta_{i})| \cdot w_{i}$$

In simpler terms: Grammaticality is tied to *harmony function* that operates on HPSG models, which are rooted and non-exhaustive (Przepiórkowski 2021).

Introduction 00000	Gradient HPSG 00000●	Experiment 00000000	ExperimentGradient analysisSummary0000000000000000		References
Towards	gradience ir	n HPSG			
Demonstrati	ing M(I)				

Example:

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
00000	000000	0000000	000000	00	
Backgroun Coordination of	l d Junlikes				

One widely assumed position contends that conjuncts in a given coordinate structure **must** have:

- The same syntactic category (Chomsky 1957; Williams 1981; Bruening and Khalaf 2020)
- The same case (Weisser 2020)

Counter-examples:

We all believe [[PP in positive energy] and [CP that what you give comes back]].

(Patejuk and Przepiórkowski 2023)

[Interpretation] [Interpretation] [Interpretation]
[Interpretation] [Interpretation]
[Interpretation] [Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interpretation]
[Interp

(Parrot 2009)

Controversy continues:

- Numerous attested counter-examples from Polish and English (see Przepiórkowski 2022; Patejuk and Przepiórkowski 2023)
- Lack of extensive cross-linguistic data
- Lack of experimental data

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
00000	000000	0000000	000000	00	
Outline					

General Hypothesis

There is no universal requirement imposed by coordination that conjuncts must match both in their category and case.

So long as the conjuncts serve the same grammatical function in the sentence, valid category or case mismatches can occur in **Turkish**.

Design: Unlike category block & Unlike case block **Variables:** CATEGORY/CASE MATCH × FUNCTION MATCH **Method**: • Token-set methodology (Cowart 1997).

• Likert scale (-3 to 3).

Materials: 84 target sentences (split into 4 sub-surveys) and 22 fillers. **Sample:** 48 native speakers of Turkish (Mean age = 30.25)

Introduction 00000	Gradie 0000	nt HPSG	Experiment 00000000	Gradi OOC	ient analysis 0000	Sum OO		References
Unlike	categoi	ry block						
Condi Predi to LCA Mate	itions: CAT ction: LCAT AT-UF and L rials: • 12 • UC	EGORY (like/ T-LF and UCAT JCAT-UF. × 4 = 48 tat CAT-LF: Either	unlike) × F F-LF senten rget senten r unlike adj	UNCTION ces will r ices split uncts or	(like/unli eceive hi into 4 su argumen	ike) gher sco b-survey ts	res compa s	red
(TS1)	⟨lcat- lf ⟩.	Bu [[_{NP(s} this toprak-lar- land-PL-1P 'These wars o	UBJ) sava: war- Imiz-da L.POSS-LOC and rebellior	ş-lar] PL yıl-lar-c year-PL ns continu	ve [_N and a si -ADVZ co ed for yea	P(suвյ) ür-dü. ontinue-Ps rs in our la	isyan-lar]] rebellion-คเ รา ฉnds.'	
	$\langle {\sf UCAT} extsf{-lf} angle.$	Bu isyar this rebe [_{NP(OBL})	n-lar [llion-PL her gü every day	[[_{PP(OBL)} n]] sür / cor	yıl-lar year-PL r-dü. ntinue-PST	boyun through	ca] ve nout and	I
		'These rebell	ions continu	ed for yea	irs and eve	ery day.'		

Lit. 'These wars and for years lasted.'

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
00000	000000	00000€00	000000	00	
Unlike case	e block				

Conditions: LCASE-LF, UCASE-LF, LCASE-UF, UCASE-UF (due to Turkish case system) **Prediction:** LCASE-LF and UCASE-LF sentences will receive higher scores compared to LCASE-UF and UCASE-UF.

Materials: • $12 \times 3 = 36$ target sentences split into 4 sub-surveys.

• UCASE-LF: Unlike adjuncts

(TS4)	$\langle LCASE-LF \rangle.$	Oğlum-a son-DAT	internet-ten internet-ABL	[[_{NOM(овј})	şapka] hat	ve and
		[_{NOM(овј})	ayakkabı]] shoe	al-dı-m buy-pst-1se	i	

'I bought my son a pair of shoes and a hat through the internet.'

$\langle ucase-\mathbf{LF} \rangle.$	Oğlum-a	[[_{ABL(adjunct)}	internet-ten]	ve	
	SON-DAT		internet-ABL	and	
	[INS(ADJUNCT	_{r)} kredi	kart-ı-yla]]	ayakkabı	al-dı-m
		credit	card-3P-INS	shoe	buy-PST-1SG

'I bought my son a pair of shoes through the internet and by credit card'.

Introduction 00000	Gradient HPSG 000000	Experiment 00000000	Gradient analysis 000000	Summary 00	References
Unlike ca	ase block	contd.			

Conditions: LCASE-LF, UCASE-LF, UCASE-UF **Prediction**: LCASE-LF and UCASE-LF sentences will receive higher scores compared to LCASE-UF and UCASE-UF.

Materials: • $12 \times 3 = 36$ target sentences split into 4 sub-surveys.

• UCASE-LF: Unlike adjuncts

(TS4)	(UCASE- UF). [[_{DAT(OBL)}	Oğlu	ım-a]	ve	[_{ACC(овј})	iste-diğ-i
		son-	DAT	and		want-PTCP-3P
	ayakkabı	-уі]]	intern	et-ten	al-dı-m	
	shoe-ACC		intern	et-ABL	buy-PST-1SG	

Lit. 'I bought my son and the pair of shoes he wanted through the internet.'

(a) Unlike category coordination block

(b) Unlike case coordination block

- In both blocks, X-LF conditions received significantly higher scores.
- In unlike case block, UCASE-LF is acceptable but significantly lower than LCASE-LF (p < 0.001)

2 Gradient HPSG

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
00000	000000	00000000	O●OOOO	00	
Constraints	5				

Idea: Model both unlike argument and unlike adjunct configurations in terms of disjunctive selectional requirements (Yatabe 2004; Przepiórkowski 2021)

Modifiers: Rather underspecified relationship between modifiers and their heads

 $\begin{bmatrix} postp \\ MOD & \neg none \end{bmatrix} \rightarrow \begin{bmatrix} MOD | LOC|CAT| HEAD & verb \lor noun \end{bmatrix} \qquad \begin{bmatrix} adj \\ MOD & \neg none \end{bmatrix} \rightarrow \begin{bmatrix} MOD | LOC|CAT| HEAD & verb \end{bmatrix}$ $\begin{bmatrix} noun \\ CASE & loc \lor abl \lor ins \\ MOD & \neg none \end{bmatrix} \rightarrow \begin{bmatrix} MOD | LOC|CAT| HEAD & verb \end{bmatrix}$

The compatibility is, in turn, checked by *head-adjunct-phrase* constraint (Sag 1997)

$$head-adjunct-phrase \rightarrow \begin{bmatrix} HD-DTR & [SYNSEM] \\ \\ NON-HD-DTRS & \langle [HEAD & [MOD]] \rangle \end{bmatrix}$$

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
00000	000000	00000000	00●000	00	
Constrain Arguments	ts				

Arguments: Disjunctive requirements imposed by the predicate on its complements (via relation c and second-order HPSG).

LE for sür- 'to last/continue':

The compatibility is, in turn, checked by *head-comp-phrase* and *head-subj-phrase* constraints (Sag 1997)

head-comp-phrase \rightarrow
 COMPS
 ()

 HD-DTR
 [COMPS (1, ..., II)]

 NON-HD-DTRS
 [SS 1], ..., [SS II]

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
00000	000000	00000000	000●00	00	
Constraints Global constrain	S Its on coordination	I			

So far, valid UCAT-LF and UCASE-LF configurations are accounted for.

However, UCAT-LF and UCASE-LF are less acceptable than their fully parallel counterparts.

Idea: Constraints that 'detect' unlike category and unlike case coordination.

```
 \begin{array}{l} \mbox{CATEGORICAL UNIFORMITY CONSTRAINT} \\ \mbox{coord-phrase} \rightarrow \\ & \left[ \mbox{HEAD } \fbox[\mbox{Args } \langle ... \rangle \right] \right] \wedge \quad \left( \begin{array}{c} c(\fbox], (: \sim \textit{noun})) \lor c(\fbox], (: \sim \textit{adj})) \lor c(\fbox], (: \sim \textit{postp})) \lor \\ & c(\fbox], (: \sim \textit{adv})) \lor c(\fbox], (: \sim \textit{verb})) \end{array} \right) \end{array}
```

 $\begin{array}{l} \textbf{CASE UNIFORMITY CONSTRAINT} \\ \textbf{coord-phrase} \rightarrow \\ (\left[\textbf{HEAD } \left[\textbf{ARGS } \left< \dots \right> \right] \right] \land \textbf{c(T, (:~ noun))}) \rightarrow \\ (c(T, (: CASE \sim nom)) \lor \textbf{c(T, (: CASE \sim gen))} \lor \\ c(T, (: CASE \sim acc)) \lor \textbf{c(T, (: CASE \sim dat))} \lor \\ c(T, (: CASE \sim acc)) \lor \textbf{c(T, (: CASE \sim abl))} \lor \\ c(T, (: CASE \sim ins))) \end{array}$

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
00000	000000	00000000	0000●0	00	
Adding we	ights				

Gradient HPSG is **agnostic towards** the method of extracting weights from experimental data:

- Crude analysis (e.g., differences between means)
- Simple/multiple linear regression
- ML models (e.g., support vector machine, random forest)
- Linear mixed effects models

Constraints	Estimated weight
head-x-phrase	-2.40
cat-uniformity	-0.67
case-uniformity	-0.66

Table: LMEM trained on the experimental data

ntroduction 00000	Gradient HPSG 000000	Experiment	Gradient a ○ 00000●	nalysis	Summary 00	References
Predic	tions					
Recons	sider:					
(a.) I 1	Bu isyan-lar this rebellion-PL sür-dü. continue-PST	[[_{РР(сомр)} yıl-la year-	r boyunca] PL throughout	ve and	[_{NP(comp)} h e	er gün]] very day
,	These rebellions con	tinued for years an	d every day.'			
(b.)	[[_{NP.nom(SUBJ}) Bu this sür-dü. continue-PST	savaş-lar] ve war-PL anc	[_{NP.loc(MOD)} tı I li	oprak-lar- and-PL-1P	IMIZ-da]] L.POSS-LOC	yıl-lar-ca year-PL-ADVZ
I	Lit. 'These wars and h	in our lands lasted j	for years'			
	head-x-phrase w = 2.40	cat-uniformity w = 0.67	case-uniformity w = 0.66	M(I)	Prediction	Actual (Mean)
(a.) (b.)	0	1 0	0 1	-0.67 -3.06	1.72 -0.67	1.73 -0.62

Table: Modelness & Prediction & Actual

2 Gradient HPSG

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
00000	000000	00000000	000000	O●	
Summary					

There is a clash between experimental data and theories of grammar:

- Data is confounded; idealization is warranted.
- Data is reliable; gradience should be modeled.

Existing options are NOT good enough:

- Not well-formalized
- Not intricate enough
- Not compatible with experimental data

Gradient HPSG is an amalgamation of HPSG and Linear-OT:

- Grammar is type hierarchy & weighted constraints.
- Grammaticality is a real-value.
- AJT data for training

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References
00000	000000	00000000	000000	00	
References	5				

- Brew, C. (1995). Stochastic HPSG. In Abney, S. P. and Hinrichs, E. W., editors, Seventh Conference of the European Chapter of the Association for Computational Linguistics, Dublin, Ireland. Association for Computational Linguistics.
- Bruening, B. and Khalaf, E. A. (2020). Category mismatches in coordination revisited. *Linguistic Inquiry*, 51(1):1–36.
- Chomsky, N. (1957). Syntactic Structures. Mouton & Co., The Hague.
- Cowart, W. (1997). Experimental Syntax: Applying Objective Methods to Sentence Judgments. SAGE Publications.
- Featherston, S. (2005). The Decathlon Model of empirical syntax. In Kepser, S. and Reis, M., editors, *Linguistic Evidence: Empirical, Theoretical and Computational Perspectives*, pages 187–208. De Gruyter Mouton.
- Grimshaw, J. B. (1997). Projection, heads, and optimality. *Linguistic Inquiry*, 28:373–422.
- Hofmeister, P., Casasanto Staum, L., and Sag, I. A. (2014). Processing effects in linguistic judgment data: (super-)additivity and reading span scores. *Language and Cognition*, 6(1):111–145.
- Keller, F. (2000). Gradience in Grammar: Experimental and Computational Aspects of Degrees of Grammaticality. Phd thesis, University of Edinburgh.

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References	
00000	000000	00000000	000000	00		
References II						

Kempen, G. and Harbusch, K. (2008). Comparing linguistic judgments and corpus frequencies as windows on grammatical competence: A study of argument linearization in german clauses. In Steube, A., editor, *The Discourse Potential of* Underspecified Structures, pages 179–192. Walter de Gruyter, Berlin, New York.

- Legendre, G., Miyata, Y., and Smolensky, P. (1990). Harmonic Grammar a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations. Technical report CU-CS-465-90, University of Colorado at Boulder, Department of Computer Science.
- Miyao, Y. and Tsujii, J. (2008). Feature forest models for probabilistic HPSG parsing. *Computational Linguistics*, 34(1):35–80.
- Parrot, J. K. (2009). Danish vestigial case and the acquisition of vocabulary in distributed morphology. *Biolinguistics*, 3(2):270–302.
- Patejuk, A. and Przepiórkowski, A. (2023). Category Mismatches in Coordination Vindicated. *Linguistic Inquiry*, pages 1–24.
- Przepiórkowski, A. (2021). Three improvements to the hpsg model theory. In Müller, S. and Melnik, N., editors, *Proceedings of the 28th International Conference on Head-Driven Phrase Structure Grammar, Online (Frankfurt/Main)*, pages 165–185, Frankfurt/Main. University Library.
- Przepiórkowski, A. (2022). Coordination of unlike grammatical cases (and unlike categories). *Language*, 98(3):592–634.

Introduction	Gradient HPSG	Experiment	Gradient analysis	Summary	References	
00000	000000	00000000	000000	00		
References III						

- Richter, F. (2004). A Mathematical Formalism for Linguistic Theories with an Application in Head-Driven Phrase Structure Grammar. Phd thesis, Eberhard Karls Universität Tübingen.
- Riezler, S. (1999). *Probabilistic Constraint Logic Programming*. PhD thesis, University of Stuttgart.
- Sag, I. A. (1997). English relative clause constructions. *Journal of Linguistics*, 33(2):431-483.

Weisser, P. (2020). On the symmetry of case in conjunction. Syntax, 23(1):42-77.

Williams, E. (1981). Transformationless grammar. Linguistic Inquiry, 12:645-653.

Yatabe, S. (2004). A comprehensive theory of coordination of unlikes. In Müller, S., editor, Proceedings of the 11th International Conference on Head-Driven Phrase Structure Grammar, Center for Computational Linguistics, Katholieke Universiteit Leuven, pages 335–355, Stanford, CA. CSLI Publications.