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What are language errors?

* A “language error” is a deviation from rules of a language
* Due to lack of knowledge.
 Made by learners of the language.

e Language errors in writing include spelling, grammatical, word choice,
and stylistic errors



How can NLP help?

e Building automatic grammar correction tools and spell checkers.

e Rule-based systems (e.g. Microsoft Word), and advanced software that
correct different kinds of errors (e.g. Grammarly, Ginger).

e Useful tool for non-native writers.

* Evidence that corrective feedback helps language learning (Leacock et
al., Automated Grammatical Error Detection for Language Learners
2ed, 2014)



Grammatical Error Correction or “GEC”

e Automatic correction of various kinds of errors in written text.
Example (input):

The problems bring-seme-effect-on- engineering design frem in two aspect

, independent innovation and engineering application.

— from the NUS Corpus of Learner English (NUCLE)

* Most popular approach is the machine translation approach.



The Translation Approach

e Treats GEC as translation task from
“bad” English > “ ” English

Advantages:

v'Able to learn text transformations from parallel data.
v'Simple, and does not need language-dependant tools.
v'Can correct interacting errors and complex error types.

* Typically, statistical machine translation (SMT) or neural machine
translation (NMT) frameworks.



History

System combination approach
beats CONLL-2014 systems
(Susanto et al. 2014)

Japanese SMT-based
GEC and Lang-8 corpus
(Mizumoto et al. 2011)

Combining word and
character-level SMT
(Chollampatt and Ng, 2017)

Neural models as features
(Chollampatt et al. 2016)

—0—0—0 00000

CoNLL-2014 Shared Task:
2/3 top systems use SMT

SMT for countability
errors of mass nouns
(Brockett et al. 2006)

GEC-specific

(Junczys-Dowmunt and
Grundkiewicz 2016)

features and

Neural machine translation
approach to GEC
(Yuan and Briscoe 2016)

Convolutional neural
encoder-decoder for GEC
achieves best results
(Chollampatt and Ng,
AAAI 2018 — to appear)




Data

For training:

* Parallel Corpora Lang-8
- Annotated Learner Dataset: NUCLE Let our community of native speakers

support your language learning.
- C ra W | e d fro m I_a n g - 8 A new language learning platform where native speakers correct what you write. Try

o Eng//Sh Corpora CreateanAcc.:ount(Frse)
Wikipedia, CommonCrawl

ui
iOS service!

For testing:

CoNLL-2014 shared task test set e e s
(1312 sentences)

Metric: F, s using MaxMatch scorer



Word and Character-level SMT for GEC



Statistical Machine Translation Approach

Parallel Text
(Learner Text &
Corrected Text)

train TRANSLATION LANGUAGE train  Well-formed
MODEL MODEL English text

Input SMT Output
Sentence DECODER Sentence



Statistical Machine Translation Approach

e Using a log-linear framework:

N
T* = argmax P(T|S) = argmaxz A; (fi(S,T))
T T 4
i=1

T* :bestoutput sentence

S : source sentence

T  :candidate output sentence
N  :number of features

A :ithfeature weight

fi  :ithfeature function

* Feature weights A; are tuned using MERT optimizing Fys metric on
development set.



Phrase-based SMT

Input Sentence (S)

Thus, advice from hospital plays the important role for this.



Phrase-based SMT

Input Sentence (S)

Thus,

advice from

hospital/| plays

the important

role for

this .

|

|

[N

\

Thus,

advice from

the hospital

plays

an important

role in

this.

Output Sentence (T*)
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Useful GEC-specific Features

* Introduced by Junczys-Dowmunt and Grundkiewicz (CoNLL-2014 Shared
Task, EMNLP 2016)

> Word Class Language Model

> Operation Sequence Model

> Edit Operations

> Sparse Edit Operation Features
> A Web-scale LM
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Neural Network Joint Model

* Joint Model (JM) vs Language Model (LM)

SRC: Thelcat sigt inla mat .

HYP: Thelcats satlon the mat .

3+2 gram JM: P(sat|cat, sit, in, cats) Bigram LM: P(sat|cats)

 Feature Function: -
T

f(T: S) = P(T|S) = Hp(tilsa—1»5a15a+1;ti—1)
=1



Neural Network Joint Model

P(sat|cat, sit, in, cats)

Output Vocabulary
* Uses a feed-forward { A —
| k (Devli
neural network (Devlin et 00000000 P(target word | context)
al., 2014) T
¢ 5+5 gram NNJM for GEC = T i
in Chollampatt et al. 50000000 :
(IJCAI 2016 and BEA ©0000000000000
Workshop 2017) TE TE TE T E,

OO0 OO0 OO EOOOO
cat Sit in i cats
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NNJM Adaptation

Training: using log likelihood with self normalization.

N
1

L= ~ Z log P(y = t;|h;) — alog*(Z(h;))]

Py
Adaptation: adding KL-divergence regularization term to loss function:
K_iiip(m(?_t. ) log — +.|h,

N2 y = tj|hi)log Py = t;]h;)
Adaptation Data:
v'Higher quality error annotations
v'Higher error/sentence ratio




SMT for Spelling Correction

* Added as a post processing step to the word-level SMT.

e Character-level SMT gets the unknown words from the SMT system
and generates candidates (may be non-words)

utilises
utlises utilizes

utilise

utilishes

* Rescoring with language model to filter away non-word candidates
and pick best correction based on context.



Setup

Development Data:
> 5 458 sentences from NUCLE with at least 1 error/sentence.

Parallel Training Data for Word-level SMT:
> Lang-8 , NUCLE (2.21M sentences, 26.77M source words)
Data for Character-level SMT:

> Unigue words in the corrected side of NUCLE and the corpora of misspellings
(http://www.dcs.bbk.ac.uk/~ROGER/corpora.html)

LM Training Data:
> Wikipedia (1.78B tokens), Common Crawl LM (94B tokens)
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Results

60.00
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43.16

SMT-GEC

45.90

+GEC
FEATURES

R&R (2016) :ROZOVSKAYA AND ROTH (ACL 2016)
J&G (2016) :JUNCZYS DOWMUNT AND GRUNDKIEWICZ (EMNLP 2016)

53.14
4995 51.70

| ‘ ‘ 47.40
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49.52
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Multilayer Convolutional Encoder and
Decoder Neural Network for GEC



Encoder-Decoder Approach

DECODER Output

Input ENCODER -
Sentence

Sentence _—]

NOILNALLY




Encoder-Decoder Approach

Prior work in GEC: Recurrent Neural Network (RNN)-based approaches
(Bahdanau et al. 2015)

We use a fully Convolutional Neural Network (CNNs)-based approach
(Gehring et al. 2017)...



A Multilayer Convolutional Encoder-Decoder

<pad>
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A Multilayer Convolutional Encoder-Decoder

Encoder

<pad> .
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A Multilayer Convolutional Encoder-Decoder

Encoder Layers

Encoder
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A Multilayer Convolutional Encoder-Decoder

Encoder
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A Multilayer Convolutional Encoder-Decoder

Encoder
<pad> .
) Consists of seven layers.
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A Multilayer Convolutional Encoder-Decoder

Decoder
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A Multilayer Convolutional Encoder-Decoder
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Pre-training Word Embeddings

* Word embeddings are pre-trained and initialized.
* Trained using fastText (Bojanowski et al., 2017) on Wikipedia.
e Uses underlying character n-gram sequences of words

Advantages

v'Reliable embeddings can be constructed for rarer words.
v'"Morphology of words is considered.



Ensembling and Re-scoring

* Ensembling multiple models, i.e. the log probabilities for multiple
models are averaged during prediction of each output word.

e The final beam candidates are re-scored using features:
 Edit Operation (EO): #insertions, #deletions, #substitutions
e Language Model (LM): web-scale LM score, #words

* Feature weights tuning done similar to SMT: MERT optimizing Fy s on
the development data.



Model and Training Details

* Data: As in Chollampatt and Ng (BEA 2017) except for using only
annotated sentence pairs during training.

e Vocabulary: 30K most frequent words on source and target side
* Number of dimensions of embeddings: 500

* Number of dimensions of encoder/decoder output vectors: 1024
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45 36 46.38

MULTILAYER  PRE-TRAINING ENSEMBLE OF 4 RE-SCORING

CONV ENC-DEC EMBEDDINGS
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MODELS
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53.14
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(EO,LM)

AND NG (2017)

WITHOUT LM

AL. (2017)
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Challenges and Future Work

* Lack of good quality parallel data.
* Going beyond sentence-level.

* Adaptation to diverse learners.



Thank You

Email: shamil@u.nus.edu
Website: shamilcm.github.io
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