

Alexander Panchenko

INDUCING INTERPRETABLE WORD SENSES FOR WSD AND ENRICHMENT OF LEXICAL RESOURCES

- word sense embeddings via retrofitting [Pelevina et al., 2016, Remus & Biemann, 2018];
- inducing synsets [Ustalov et al., 2017b, Ustalov et al., 2017a, Ustalov et al., 2018]
- inducing semantic classes [Panchenko et al., 2018]

- word sense embeddings via retrofitting [Pelevina et al., 2016, Remus & Biemann, 2018];
- inducing synsets [Ustalov et al., 2017b, Ustalov et al., 2017a, Ustalov et al., 2018]
- inducing semantic classes [Panchenko et al., 2018]

Making induced senses interpretable [Panchenko et al., 2017b, Panchenko et al., 2017c]

- word sense embeddings via retrofitting [Pelevina et al., 2016, Remus & Biemann, 2018];
- inducing synsets [Ustalov et al., 2017b, Ustalov et al., 2017a, Ustalov et al., 2018]
- inducing semantic classes [Panchenko et al., 2018]
- Making induced senses interpretable [Panchenko et al., 2017b, Panchenko et al., 2017c]
- Linking induced word senses to lexical resources [Panchenko, 2016, Faralli et al., 2016, Panchenko et al., 2017a, Biemann et al., 2018]

Word vs sense embeddings

Word vs sense embeddings

Related work

Related work: knowledge-based

AutoExtend [Rothe & Schütze, 2015]

* image is reproduced from the original paper

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 8/54

Related work: knowledge-free

Adagram [Bartunov et al., 2016]

• Multiple vector representations θ for each word:

Related work: knowledge-free

Adagram [Bartunov et al., 2016]

• Multiple vector representations θ for each word:

$$p(\mathbf{Y}, \mathbf{Z}, \beta | \mathbf{X}, \boldsymbol{\alpha}, \theta) = \prod_{w=1}^{V} \prod_{k=1}^{\infty} p(\beta_{wk} | \boldsymbol{\alpha}) \prod_{i=1}^{N} [p(\mathbf{z}_{i} | \mathbf{x}_{i}, \beta) \prod_{j=1}^{C} p(y_{ij} | \mathbf{z}_{i}, \mathbf{x}_{i}, \theta)],$$

z_i - a hidden variable: a sense index of word x_i in context C;
α - a meta-parameter controlling number of senses.

Related work: knowledge-free

Adagram [Bartunov et al., 2016]

• Multiple vector representations θ for each word:

$$p(\mathbf{Y}, \mathbf{Z}, \beta | \mathbf{X}, \boldsymbol{\alpha}, \theta) = \prod_{w=1}^{V} \prod_{k=1}^{\infty} p(\beta_{wk} | \boldsymbol{\alpha}) \prod_{i=1}^{N} [p(\mathbf{z}_{i} | \mathbf{x}_{i}, \beta) \prod_{j=1}^{C} p(y_{ij} | \mathbf{z}_{i}, \mathbf{x}_{i}, \theta)],$$

z_i – a hidden variable: a sense index of word x_i in context C;
α – a meta-parameter controlling number of senses.

See also: [Neelakantan et al., 2014] and [Li and Jurafsky, 2015]

Related work: word sense induction

Word sense induction (WSI) based on graph clustering:

- Lin, 1998]
- [Pantel and Lin, 2002]
- [Widdows and Dorow, 2002]
- Chinese Whispers [Biemann, 2006]
- [Hope and Keller, 2013]

Related work: Chinese Whispers#1

* source of the image: http://ic.pics.livejournal.com/blagin_anton/33716210/2701748/2701748_800.jpg

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 11/54

Related work: Chinese Whispers#2

Related work: Chinese Whispers#2

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 13/54

Related work: Chinese Whispers#2

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 14/54

RepL4NLP@ACL'16 [Pelevina et al., 2016], LREC'18 [Remus & Biemann, 2018]

Prior methods:

- Induce inventory by clustering of word instances
- Use existing sense inventories

Our method:

- Input: word embeddings
- Output: word sense embeddings
- Word sense induction by clustering of word ego-networks

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 15/54

Sense embeddings using retrofitting

From word embeddings to sense embeddings

Sense embeddings using retrofitting

Word sense induction using ego-network clustering

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 17/54

Sense embeddings using retrofitting

Neighbours of Word and Sense Vectors

Vector	Nearest Neighbors
table	tray, bottom, diagram, bucket, brackets, stack, basket, list, parenthesis, cup, saucer, pile, playfield, bracket, pot, drop-down, cue, plate

Neighbours of Word and Sense Vectors

Vector	Nearest Neighbors
table	tray, bottom, diagram, bucket, brackets, stack, basket, list, parenthesis, cup, saucer, pile, playfield, bracket, pot, drop-down, cue, plate
table#0	leftmost#0, column#1, tableau#1, indent#1, bracket#3, pointer#0, footer#1, cursor#1, diagram#0, grid#0
table#1	pile#1, stool#1, tray#0, basket#0, bowl#1, bucket#0, box#0, cage#0, saucer#3, mirror#1, pan#1, lid#0

Sense embeddings using retrofitting

Word Sense Disambiguation

- Context extraction: use context words around the target word
- 2 Context filtering: based on context word's relevance for disambiguation
- 3 Sense choice in context: maximise similarity between a context vector and a sense vector

Sense embeddings using retrofitting

table senses					
data	furniture				

Sense embeddings using retrofitting

Sense embeddings using retrofitting

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 22/54

Sense embeddings using retrofitting

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 23/54

Unsupervised WSD SemEval'13, ReprL4NLP [Pelevina et al., 2016]:

comparable to SOTA, incl. Adagram sense embeddings.

Unsupervised WSD SemEval'13, ReprL4NLP [Pelevina et al., 2016]: comparable to SOTA, incl. Adagram sense embeddings.

Semantic relatedness, LREC'2018 [Remus & Biemann, 2018]:

	AUTOEXTEND	^{ADAGRA} M	sgns	clove .	SYMPAT .	^{LSAB} OW	^{LSAHAL}	PARAGRAMSL
SIMLEX999	0.45	0.29	0.44	0.37	0.54	0.30	0.27	0.68
MEN	0.72	0.67	0.77	0.73	0.53	0.67	0.71	0.77
SIMVERB	0.43	0.27	0.36	0.23	0.37	0.15	0.19	0.53
WORDSIM353	0.58	0.61	0.70	0.61	0.47	0.67	0.59	0.72
SIMLEX999-N	0.44	0.33	0.45	0.39	0.48	0.32	0.34	0.68
MEN-N	0.72	0.68	0.77	0.76	0.57	0.71	0.73	0.78

SES

Unsupervised WSD SemEval'13, ReprL4NLP [Pelevina et al., 2016]:comparable to SOTA, incl. sense embeddings.

Semantic relatedness, LREC'2018 [Remus & Biemann, 2018]:

	AUTOEXTEND	ADAGRAM	sans	SGNS+SENSES	GLOVE	GLOVE+SENSES	SYMPAT	SYMPAT+SENSES	^{LSAB} OW	^{LSAB} OW+SENSES	^{LS} AHAL	^{LSAHAL+SENSES}	PARAGRAMSL	PARAGRAMSL+SEI
SIMLEX999	0.45	0.29	0.44	0.46	0.37	0.41	0.54	0.55	0.30	0.39	0.27	0.38	0.68	0.64
MEN	0.72	0.67	0.77	0.78	0.73	0.77	0.53	0.68	0.67	0.70	0.71	0.74	0.77	0.80
SIMVERB	0.43	0.27	0.36	0.39	0.23	0.30	0.37	0.45	0.15	0.22	0.19	0.28	0.53	0.53
WORDSIM353	0.58	0.61	0.70	0.69	0.61	0.65	0.47	0.62	0.67	0.66	0.59	0.63	0.72	0.73
SIMLEX999-N	0.44	0.33	0.45	0.50	0.39	0.47	0.48	0.55	0.32	0.46	0.34	0.44	0.68	0.66
MEN-N	0.72	0.68	0.77	0.79	0.76	0.80	0.57	0.74	0.71	0.73	0.73	0.76	0.78	0.81

Sense embeddings using retrofitting

Synset induction

ACL'17 [Ustalov et al., 2017b]

Examples of extracted synsets:

Size	Synset
2	{decimal point, dot}
3	{gullet, throat, food pipe}
4	<i>{microwave meal, ready meal, TV dinner, frozen dinner}</i>
5	{objective case, accusative case, oblique case, object
	case, accusative}
6	{radio theater, dramatized audiobook, audio theater, ra-
	dio play, radio drama, audio play}

Synset induction

Outline of the 'Watset' method:

Synset induction

Stage 1: Ambigous Graph before the Local Clustering

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 29/54

Synset induction

Stage 2: Sense Inventory with Ambigous Neighbors

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 30/54

Synset induction

Stage 3: Disambiguated Graph before the Global Clustering

Synset induction

Synset induction

Induction of semantic classes

Examples of semantic classes:

ID	Sense Cluster	Hypernyms
1	peach#1, banana#1, pineapple#0, berry#0, blackberry#0, grapefruit#0, strawberry#0, blue- berry#0, grape#0, melon#0, orange#0, pear#0, plum#0, raspberry#0, watermelon#0, apple#0, apricot#0,	fruit#0, crop#0, ingredi- ent#0, food#0, ·
2	C#4, Basic#2, Haskell#5, Flash#1, Java#1, Pas- cal#0, Ruby#6, PHP#0, Ada#1, Oracle#3, Python#3, Apache#3, Visual Basic#1, ASP#2, Delphi#2, SQL Server#0, CSS#0, AJAX#0, the Java#0,	programming language#3, technology#0, language#0, format#2, app#0

Induction of semantic classes

Induction of sense semantic classes

Filtering noisy hypernyms with semantic classes **LREC'18** [Panchenko et al., 2018]:

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 35/54

Induction of sense semantic classes

Filtering of a noisy hypernymy database with semantic classes. **LREC'18** [Panchenko et al., 2018]

	Precision	Recall	F-score
Original Hypernyms (Seitner et al., 2016)	0.475	0.546	0.508
Semantic Classes (coarse-grained)	0.541	0.679	0.602

Making induced senses interpretable

Knowledge-based sense representations are interpretable

Categories High-termine and a second second

Python is a widely used general-purpose, high-level programming language. I) Wikipedia

More definitions

IS A	programming language = free software = scripting language @
HAS PART	pandas
HAS KIND	Stackless Python
DESIGNER	Guido van Rossum
DEVELOPER	Python Software Foundation = Guido van Rossum
DIALECTS	Cython - Stackless Python
FLUENCED BY	ALGOL 68 = alphabet = ruby
LICENSE	Python Software Foundation License

More relations

EXPLORE NETWORK

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 38/54

Most knowledge-free sense representations are uninterpretable

In [11]: sv.syn0[s	sv.vocab[" <mark>python</mark>	<pre>#2"].index]</pre>			
Out[11]:					
array([-0.0493343	, -0.02244579,	0.02296794,	0.03484775,	0.0404554 ,	
0.0430485	7, -0.02211852,	-0.02118347,	-0.03212074,	-0.01202453,	
0.0120608	1, 0.05609602,	-0.05950832,	0.00859888,	-0.01051112,	
0.0317778	4, -0.06489294,	0.03833736,	0.05437034,	-0.01451268,	
-0.0241923	9, -0.03195219,	0.0620546 ,	0.10284331,	0.07430374,	
-0.0410924	3, -0.0118133 ,	0.05401124,	0.05283536,	0.00873093,	
0.0366209	2, 0.03762468,	0.02368712,	-0.03980339,	0.02791001,	
0.0252995	2, -0.02255581,	-0.00925604,	-0.03940469,	-0.02855149,	
-0.0817933	5, 0.02319797,	-0.0167018 ,	0.04818865,	-0.06946786,	
-0.0653019	8, 0.00522405,	-0.0336296	-0.05401101,	0.01190361],	dtype=float32)
			,	- /	

Making induced senses interpretable

Sentence Jaguar is a large spott	ed predator of tropical America similar to the leopard. 🙆
Jaguar B	
Model Word Senses based o	n Cluster Word Features C http://jobimtext.org/wsd
PREDICT SENSE	RANDOM SAMPLE
Predicted sens	es for 'Jaguar'
1. ja	guar (animal) y score: 0.00184 / Confidence: 98.87% / Sense ID: jaguar#0 / BabelNet ID: bn 00033967n
Hypernyms	animal wildlife bird mammal
Sample sentences	The Jaguar, a compact and well-muscled animal, is the largest cat in the New World. Jaguar may leap onto the back of the prey and sever the cervical vertebrae, immobilizing the target.
(i) Cluster words	lion tiger leopard wolf monkey otter croccolle alligator deer cat elephant fox eagle owl snake
Context words	elephant: 0.012 top: 0.0000 work 0.00007 cub: 0.0066 monkey: 0.0083 leopard: 0.0074 eagle: 0.0062 der: 0.0043 statistics statisticit statistics statisticit
Matching features	leopard: 0.0011 predator: 0.00040 spotted: 0.00038 large: 0.0000041 similar: 0.0000015 tropical: 5.6e-7 america: 2.0e-7
BABELNET LINK	F SHOW LESS E

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 40/54

Making induced senses interpretable

Detected Entities

The system has detected these entities in the given sentence.

Hypernymy prediction in context. EMNLP'17 [Panchenko et al., 2017b]

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 41/54

■ 11.702 sentences, 863 words with avg.polysemy of 3.1.

WSD Model		Accuracy		
Inventory	Features	Hypers	HyperHypers	
Word Senses	Random	0.257	0.610	
Word Senses	MFS	0.292	0.682	
Word Senses	Cluster Words	0.291	0.650	
Word Senses	Context Words	<u>0.308</u>	0.686	

■ 11.702 sentences, 863 words with avg.polysemy of 3.1.

WSD	WSD Model		Accuracy		
Inventory	Features	Hypers	HyperHypers		
Word Senses	Random	0.257	0.610		
Word Senses	MFS	0.292	0.682		
Word Senses	Cluster Words	0.291	0.650		
Word Senses	Context Words	0.308	<u>0.686</u>		
Super Senses	Random	0.001	0.001		
Super Senses	MFS	0.001	0.001		
Super Senses	Cluster Words	0.174	0.365		
Super Senses	Context Words	0.086	0.188		

Linking induced senses to resources

LREC'16 [Panchenko, 2016], ISWC'16 [Faralli et al., 2016], SENSE@EACL'17 [Panchenko et al., 2017a], NLE'18 [Biemann et al., 2018]

Linking induced senses to resources

Word	AdaGram	BabelNet	AdaGram BoW	BabelNet BoW		
python	2	bn:01713224n	perl, php, java, smalltalk, ruby, lua, tcl, scripting, javascript, bindings, binding, programming, coldfusion, actionscript, net,	language, programming, python- ista, python programming, python3, python2, level, com- puter, pythonistas, python3000,		
python	1	bn:01157670n	monty, circus, spamalot, python, magoo, muppet, snoopy, fea- turette, disney, tunes, tune, clas- sic, shorts, short, apocalypse,	monty, comedy, monty python, british, monte, monte python, troupe, pythonesque, foot, artist, record, surreal, terry,		
python	3	bn:00046456n	spectacled, unicornis, snake, gi- ant, caiman, leopard, squirrel, crocodile, horned, cat, mole, ele- phant, opossum, pheasant,	molurus, indian, boa, tigris, tiger python, rock, tiger, indian python, reptile, python molurus, indian rock python, coluber,		
python	4	bn:01157670n	circus, fly, flying, dusk, lizard, moth, unicorn, puff, adder, vul- ture, tyrannosaurus, zephyr, bad- ger,	monty, comedy, monty python, british, monte, monte python, troupe, pythonesque, foot, artist, record, surreal, terry,		
python	1	bn:00473212n	monty, circus, spamalot, python, magoo, muppet, snoopy, fea- turette, disney, tunes, tune, clas- sic, shorts, short, apocalypse,	pictures, monty, python monty pictures, limited, company, python pictures limited, king- dom, picture, serve, director, 		
python	1	bn:03489893n	monty, circus, spamalot, python, magoo, muppet, snoopy, fea- turette, disney, tunes, tune, clas- sic, shorts, short, apocalypse,	film, horror, movie, clabaugh, richard, monster, century, direct, snake, python movie, television, giant, natural, language, for-tv,		

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 45/54

Linking induced senses to resources

Model	Representation of the Sense "disk (medium)"
WordNet	memory, device, floppy, disk, hard, disk, disk, computer, science, computing, diskette, fixed, disk, floppy, magnetic, disc, magnetic, disk, hard, disc, storage, device
WordNet + Linked	recorder, disk, floppy, console, diskette, handset, desktop, iPhone, iPod, HDTV, kit, RAM, Discs, Blu- ray, computer, GB, microchip, site, cartridge, printer, tv, VCR, Disc, player, LCD, software, component, camcorder, cellphone, card, monitor, display, burner, Web, stereo, internet, model, iTunes, turntable, chip, cable, camera, iphone, notebook, device, server, surface, wafer, page, drive, laptop, screen, pc, television, hardware, YouTube, dvr, DVD, product, folder, VCR, radio, phone, circuitry, partition, megabyte, peripheral, format, machine, tuner, website, merchandise, equipment, gb, discs, MP3, hard-drive, piece, video, storage device, memory device, microphone, hd, EP, content, soundtrack, webcarm, system, blade, graphic, microprocessor, collection, document, programming, battery, key- board, HD, handheld, CDs, reel, web, material, hard-disk, ep, chart, debut, configuration, recording, album, broadcast, download, fixed disk, planet, pda, microfilm, iPod, videotape, text, cylinder, cpu, canvas, label, sampler, workstation, electrode, magnetic disc, catheter, magnetic disk, Video, mo- pile, cd, song, modern, mouse, tube, set, ipad, signal, substrate, vinyl, music, clip, pad, audio, com- pilation, memory, message, reissue, ram, CD, subsystem, hdd, touchscreen, electronics, demo, shell, sensor, file, shelf, processor, cassette, extra, mainframe, motherboard, floppy disk, lp, tape, version, kilobyte, pacemaker, browser, Playstation, pager, module, cache, DVD, movie, Windows, cd-rom, e- book, valve, directory, harddrive, smartphone, audiotape, technology, hard disk, show, computing, computer science, Blu-Ray, blu-ray, HDD, HD-DVD, scanner, hard disc, gadget, booklet, copier, play- back, TiVo, controller, filter, DVDs, gigabyte, paper, mp3, CPU, dvd-r, pipe, cd-r, playlist, slot, VHS, film, videocassette, interface, adapter, database, manual, book, channel, changer, storage

Linking induced senses to resources

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 47/54

Linking induced senses to resources

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 48/54

Conclusion

Conclusion •0000

Vectors + Graphs = \heartsuit

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 50/54

Take home messages

We can induce word senses, synsets and semantic classes in a knowledge-free way using graph clustering and distributional models.

Take home messages

- We can induce word senses, synsets and semantic classes in a knowledge-free way using graph clustering and distributional models.
- We can make the induced word senses interpretable in a knowledge-free way with hypernyms, images, definitions.

Take home messages

- We can induce word senses, synsets and semantic classes in a knowledge-free way using graph clustering and distributional models.
- We can make the induced word senses interpretable in a knowledge-free way with hypernyms, images, definitions.
- We can link induced senses to lexical resources to
 - improve performance of WSD;
 - enrich lexical resources with emerging senses.

Conclusion

An ongoing shared task on WSI&D

Participate in an ACL SIGSLAV sponsored shared task on word sense induction and disambiguation for Russian!

More details: http://russe.nlpub.org/2018/wsi

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 52/54

Acknowledgments

Thank you! Questions?

This research was supported by

Deutscher Akademischer Austausch Dienst German Academic Exchange Service

Evaluation on SemEval 2013 Task 13 WSI&D:

Conclusion

0000

Model	Jacc.	Tau	WNDCG	F.NMI	F.B-Cubed
AI-KU (add1000)	0.176	0.609	0.205	0.033	0.317
AI-KU	0.176	0.619	0.393	0.066	0.382
AI-KU (remove5-add1000)	0.228	0.654	0.330	0.040	0.463
Unimelb (5p)	0.198	0.623	0.374	0.056	0.475
Unimelb (50k)	0.198	0.633	0.384	0.060	0.494
UoS (#WN senses)	0.171	0.600	0.298	0.046	0.186
UoS (top-3)	0.220	0.637	0.370	0.044	0.451
La Sapienza (1)	0.131	0.544	0.332	-	-
La Sapienza (2)	0.131	0.535	0.394	-	-
AdaGram, α = 0.05, 100 dim	0.274	0.644	0.318	0.058	0.470
w2v	0.197	0.615	0.291	0.011	0.615
w2v (nouns)	0.179	0.626	0.304	0.011	0.623
JBT	0.205	0.624	0.291	0.017	0.598
JBT (nouns)	0.198	0.643	0.310	0.031	0.595
TWSI (nouns)	0.215	0.651	0.318	0.030	0.573

Jan 11, 2018 Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 54/54

Bartunov, S., Kondrashkin, D., Osokin, A., & Vetrov, D. (2016). Breaking sticks and ambiguities with adaptive skip-gram. In Artificial Intelligence and Statistics (pp. 130–138).

Biemann, C., Faralli, S., Panchenko, A., & Ponzetto, S. P. (2018). A framework for enriching lexical semantic resources with distributional semantics.

In *Journal of Natural Language Engineering* (pp. 56–64).: Cambridge Press.

Faralli, S., Panchenko, A., Biemann, C., & Ponzetto, S. P. (2016). Linked disambiguated distributional semantic networks. In *International Semantic Web Conference* (pp. 56–64).: Springer.

Panchenko, A. (2016). Best of both worlds: Making word sense embeddings interpretable. In LREC.

Panchenko, A., Faralli, S., Ponzetto, S. P., & Biemann, C. (2017a).

Using linked disambiguated distributional networks for word sense disambiguation.

In Proceedings of the 1st Workshop on Sense, Concept and Entity Representations and their Applications (pp. 72–78). Valencia, Spain: Association for Computational Linguistics.

Panchenko, A., Marten, F., Ruppert, E., Faralli, S., Ustalov, D., Ponzetto, S. P., & Biemann, C. (2017b). Unsupervised, knowledge-free, and interpretable word sense disambiguation.

In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (pp. 91–96). Copenhagen, Denmark: Association for Computational Linguistics.

Panchenko, A., Ruppert, E., Faralli, S., Ponzetto, S. P., & Biemann, C. (2017c). Unsupervised does not mean uninterpretable: The case for word sense induction and disambiguation.

In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1,

Long Papers (pp. 86–98). Valencia, Spain: Association for Computational Linguistics.

 Panchenko, A., Ustalov, D., Faralli, S., Ponzetto, S. P., & Biemann, C. (2018).
Improving hypernymy extraction with distributional semantic classes.
In *Proceedings of the LREC 2018* Miyazaki, Japan: European Language Resources Association.

Pelevina, M., Arefiev, N., Biemann, C., & Panchenko, A. (2016). Making sense of word embeddings.

In Proceedings of the 1st Workshop on Representation Learning for NLP (pp. 174–183). Berlin, Germany: Association for Computational Linguistics.

Inducing Interpretable Word Senses for WSD and Enrichment of Lexical Resources, Alexander Panchenko 54/54

Retrofittingword representations for unsupervised sense aware word similarities.

In *Proceedings of the LREC 2018* Miyazaki, Japan: European Language Resources Association.

🔋 Rothe, S. & Schütze, H. (2015).

Autoextend: Extending word embeddings to embeddings for synsets and lexemes.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 1793–1803). Beijing, China: Association for Computational Linguistics.

Ustalov, D., Chernoskutov, M., Biemann, C., & Panchenko, A. (2017a).

Fighting with the sparsity of synonymy dictionaries for automatic synset induction.

In International Conference on Analysis of Images, Social Networks and Texts (pp. 94–105).: Springer.

Ustalov, D., Panchenko, A., & Biemann, C. (2017b). Watset: Automatic induction of synsets from a graph of synonyms.

In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers) (pp. 1579–1590). Vancouver, Canada: Association for Computational Linguistics.

 Ustalov, D., Teslenko, D., Panchenko, A., Chernoskutov, M., & Biemann, C. (2018).
Word sense disambiguation based on automatically induced synsets.
In *LREC 2018, 11th International Conference on Language*

Resources and Evaluation : 7-12 May 2018, Miyazaki (Japan) (pp. tba). Paris: European Language Resources Association, ELRA-ELDA.

Accepted for publication.