Towards Cross-checking WordNet and SUMO Using Meronymy

Javier Álvez German Rigau

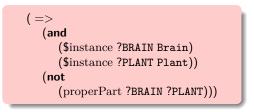
LoRea & **IXA** Groups Computer Languages and Systems Department University of the Basque Country (UPV/EHU)

Introduction

- 2 Cross-checking WordNet and Adimen-SUMO
- 3 Some Experimental Results
- 4 Conclusions and Future Work

Cross-checking knowledge sources

- This work is an initial study about:
 - Knowledge representation
 - Common Sense (world knowledge)
 - Reasoning
- In particular, we focus on:
 - ► WordNet (Fellbaum, 1998)
 - ► SUMO (Niles and Pease, 2001)
 - ► WN-SUMO Mapping (Niles and Pease, 2003)
- We expect all these knowledge sources to encode correct world knowledge (true knowledge).
- Despite being created manually, they are not free of errors and discrepancies.
- We apply a new Black-box strategy (Álvez et al., 2017b) to the meronymy information encoded in these resources.


SUMO (Niles and Pease, 2001)

- IEEE Standard Upper Ontology Working Group
- SUMO syntax goes beyond first-order logic (FOL)
- SUMO cannot be directly used by FOL Automated Theorem Provers (ATPs) without a suitable transformation
- Different transformations of SUMO into FOL:
 - ► TPTP-SUMO (Pease and Sutcliffe, 2007)
 - Adimen-SUMO (Álvez et al., 2012)

Introduction

Adimen-SUMO I

- Following the line of (Horrocks and Voronkov, 2006)
- Obtained by applying a reengineering process to SUMO
 - ▶ With the help of ATPs (Automated Theorem Provers)
 - ► Around an 88% of the *core* of SUMO (top and middle levels) is translated
 - Domain ontologies are not used (by now)
 - ► The resulting ontology can be used in tasks that involve reasoning with commonsense knowledge
- The process of manually debugging the ontology is very costly
 - Only 64 manually created tests
 - Example:

Adimen-SUMO II

- We have proposed different methodologies for the automatic debugging ontologies like Adimen-SUMO
 - Black-box testing strategies (Álvez et al., 2015, 2017b)
 - ► White-box testing strategies (Álvez et al., 2017a)
- More than 100 axioms from Adimen-SUMO has been improved

Black-box Testing I

- Introduced in (Álvez et al., 2015) and fully described in (Álvez et al., 2017b)
- Adaptation of the methodology for the design and evaluation of ontologies introduced in (Grüninger and Fox, 1995)
- Based on the use of Competency Questions (CQs):
 - Problems that an ontology is expected to answer
- Its application is automatic by means of the use of ATPs
- Classification of (dual) problems (truth and falsity tests):
 - ► Passing: the ATPs are able to demonstrate a truth test
 - ► Non-passing: the ATPs are able to demonstrate a falsity test
 - ► Unknown: the ATPs produce no answer within a time limit

Black-box Testing II

- CQs are automatically created on the basis of few Question Patterns (QPs) by exploiting WordNet and its mapping into SUMO
- In (Álvez et al., 2017b):
 - ► antonym and event (agent, instrument and result) relations
 - ► 11 QPs are proposed
 - More than 7,500 CQs are created
 - More than 43% of CQs are validated
 - Example:

Mapping between WordNet and SUMO

- Described in (Niles and Pease, 2003)
- It connects synsets of WordNet to terms of SUMO using 3 relations:
 - ▶ equivalence (=)
 - ► subsumption (+)
 - ► instance (@)
- Some examples:

$\langle calcium_n^1 angle$: [$\langle calcium_oxide_n^1 angle$: [[CompoundSubstance _c +]
. —	PoliceOfficer _a =] PoliceOrganization _c +]

Introduction

2 Cross-checking WordNet and Adimen-SUMO

- 3 Some Experimental Results
- 4 Conclusions and Future Work

Meronymy Information in WordNet

- WordNet v3.0 provides 3 part-whole relations (22,187):
 - ► part: the general meronymy relation (9,097)
 - ▶ member: it relates particulars and groups (12,293)
 - ► substance: it relates physical matters and things (797)
- For example:

 $\langle committee_n^1 \rangle$ $\langle committee_member_n^1 \rangle$

 $\langle wine_n^1 \rangle$ *(substance)* $\langle grape_n^1 \rangle$

Exploiting the Mapping between WordNet and SUMO

• First, creating a mapping between WordNet and Adimen-SUMO:

$$[Cooking_c+] (Top level)$$

$$[$subclass]$$

$$\langle frying_n^1 \rangle : [Frying_c=] (Food ontology)$$

• Propose a formal characterization of the mapping information:

$$\langle male_horse_n^1 \rangle : [Male_a+] [Horse_c+]$$

Literal interpretation:

(and (\$*instance* ?X Male) (\$*instance* ?X Horse)) • *Precise* interpretation:

(and

(attribute ?X Male) (\$instance ?X Horse))

Question patterns for the Creation of CQs (I)

- Four different QPs depending on the used mapping relations (*precise* interpretation):
 - ► equivalence
 - subsumption or instance
- QPs are instantiated according to the mapping information of the synsets in the WordNet meronymy pairs.

Question patterns for the Creation of CQs (II)

• Applying the first QP (precise interpretation):

• to the following WN-SUMO meronymy relation:

Question patterns for the Creation of CQs (III)

• Creates the following CQ:

(exists (and	(Y? X?)
(at	nstance ?X Insect) stribute ?Y Larval) ember ?X ?Y)))

Question patterns for the Creation of CQs (IV)

• Mapping of WordNet relations to Adimen-SUMO predicates, which have domain restrictions:

$\langle part angle$:	$[part_r(Object_c \times Object_c)]$
$\langle member angle$:	$[member_r(SelfConnectedObject_c \times Collection_c)]$
$\langle substance angle$:	$[material_r(Substance_c \times CorpuscularObject_c)]$

- Many discrepancies arise during the instantiation of question patterns.
- 14,513 part relations from 22,187 (65%) do not hold domain conditions.
 - Example:

$$\langle wine_{n}^{1} \rangle : [Wine_{c}=]$$

$$\langle substance \rangle \qquad [material_{r}]$$

$$\langle grape_{n}^{1} \rangle : [FruitOrVegetable_{c}+]$$

- ► Reason: the first argument of *material*_r is restricted to be *Substance*_c, which is incompatible with *FruitOrVegetable*_c
- So, we concentrate on the remaining 7,674 relations (35%)

Introduction

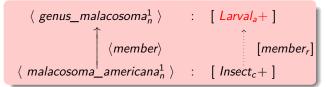
- 2 Cross-checking WordNet and Adimen-SUMO
- Some Experimental Results
 - 4 Conclusions and Future Work

Creating CQs and applying ATPs

- We apply the 4 QPs to the 7,674 relations allowing to create 2,145 CQs.
- When testing these CQs using ATPs such as Vampire (Kovács and Voronkov, 2013) or E-prover (Schulz, 2002):
 - Passing: knowledge validation
 - Non-passing: knowledge mismatches
 - WN-SUMO mapping issues
 - WordNet issues
 - SUMO issues
 - ► Unknown: Missing knowledge ... or insuficient execution time?

Knowledge Validation

$$\langle \text{ police_force}_n^1 \rangle : [\text{ PoliceOrganization}_c +]$$


$$\uparrow \langle \text{member} \rangle \qquad \uparrow [\text{member}_r]$$

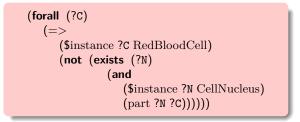
$$\langle \text{ police_officer}_n^1 \rangle : [\text{ PoliceOfficer}_a =]$$

- Reason:
 - ► The resulting CQ is entailed by Adimen-SUMO:

```
(forall (?Y)
  (=>
    (attribute ?Y PoliceOfficer)
    (exists (?X)
        (and
        ($instance ?X PoliceOrganization)
        (member ?X ?Y)))))
```

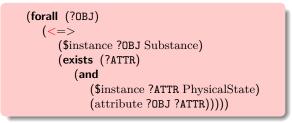
Detection of Mapping Mismatches

- Reason:
 - ► The attribute Larval_a cannot be applied to groups in Adimen-SUMO


Detection of WordNet Issues

$$\langle cell_{n}^{2} \rangle : [Cell_{c} =]$$

$$\uparrow \langle part \rangle \qquad [part_{r}]$$

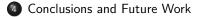

$$\langle cell_nucleus_{n}^{1} \rangle : [CellNucleus_{c} =]$$

- Reason:
 - ► Some cells lack a nucleus, as stated by the following Adimen-SUMO axiom:

Detection of Adimen-SUMO Issues

- Problem:
 - The application of subattributes of PhysicalState_A (as Solid_a) was restricted to be only! a property of Substance_c:

Summary


• Reported in (Álvez and Rigau, 2018)

SUMO	CQs						
relations	QP #1	QP #2	QP #3	QP #4	Total		
part _r	+599	+56	+162	+8	+825	42.09%	
	-6	-0	-1	-5	-12	0.61%	
member _r	+10	$^{+1}$	$^{+1}$	+0	+12	9.92%	
	-9	-0	-0	-0	-9	7.44%	
material _r	+17	+1	+2	+0	+17	26.56%	
	-0	-2	-0	-0	-2	3.13%	
Total	+626	+58	+165	+8	+857	39.95%	
	-15	-2	-1	-5	-23	1.07%	

- 857 Passing CQs (39.95% of total) enable to validate the knowledge of WordNet, SUMO and their mapping
- ▶ part is better aligned and covered (825 truth-tests, 42.09%) than member (only 12 truth-tests, 9.92%) and substance (17 truth-tests, 26.56%)
- ▶ Different issues are detected (23 falsity-tests, 1.07%)
- More than 60% of the total is *Unknown*.

Introduction

- 2 Cross-checking WordNet and Adimen-SUMO
- 3 Some Experimental Results

Conclusions

- Framework and benchmark for formal commonsense reasoning
- More than 10,000 CQs available (around 60% Unknown)!
- First steps cross-checking of WordNet, Adimen-SUMO and its mapping:
 - Validation of some pieces of knowledge
 - Detection of knowledge mismatches
 - Detection of missing knowledge
- Resources are ready for its application to practical NLP tasks
- http://adimen.si.ehu.es/web/AdimenSUMO
- https://vprover.github.io/
- https://github.com/eprover/eprover

Future Work

- Improving the WN-SUMO mapping
- Extending our proposal to additional WordNet relations
- Automatically derive new SUMO axioms from WordNet knowledge

Bibliography I

- J. Álvez and G. Rigau. Complete and consistent annotation of WordNet using the Top Concept Ontology. In Proc. of the 11th Language Resources and Evaluation Conf. (LREC 2018). European Language Resources Association (ELRA), 2018.
- J. Álvez, P. Lucio, and G. Rigau. Adimen-SUMO: Reengineering an ontology for first-order reasoning. *Int. J. Semantic Web Inf. Syst.*, 8(4):80–116, 2012.
- J. Álvez, P. Lucio, and G. Rigau. Improving the competency of first-order ontologies. In K. Barker and J. M. Gómez-Pérez, editors, *Proc. of the 8th Int. Conf. on Knowledge Capture (K-CAP 2015)*, pages 15:1–15:8. ACM, 2015. ISBN 978-1-4503-3849-3. doi: 10.1145/2815833.2815841.
- J. Álvez, M. Hermo, P. Lucio, and G. Rigau. Automatic white-box testing of first-order logic ontologies. *CoRR*, abs/1705.10219, 2017a. URL http://arxiv.org/abs/1705.10219.
- J. Álvez, P. Lucio, and G. Rigau. Black-box testing of first-order logic ontologies using WordNet. *CoRR*, abs/1705.10217, 2017b. URL http://arxiv.org/abs/1705.10217.
- C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.

Bibliography II

- M. Grüninger and M. S. Fox. Methodology for the design and evaluation of ontologies. In Proc. of the Workshop on Basic Ontological Issues in Knowledge Sharing (IJCAI 1995), 1995.
- I. Horrocks and A. Voronkov. Reasoning support for expressive ontology languages using a theorem prover. In J. Dix et al., editor, *Foundations of Information and Knowledge Systems*, LNCS 3861, pages 201–218. Springer, 2006.
- L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In N. Sharygina and H. Veith, editors, *Computer Aided Verification*, LNCS 8044, pages 1–35. Springer, 2013. ISBN 978-3-642-39798-1.
- I. Niles and A. Pease. Towards a standard upper ontology. In Guarino N. et al., editor, *Proc. of the 2nd Int. Conf. on Formal Ontology in Information Systems (FOIS 2001)*, pages 2–9. ACM, 2001. doi: 10.1145/505168.505170.
- I. Niles and A. Pease. Linking lexicons and ontologies: Mapping WordNet to the Suggested Upper Merged Ontology. In H. R. Arabnia, editor, *Proc. of the IEEE Int. Conf. on Inf. and Knowledge Engin. (IKE 2003)*, volume 2, pages 412–416. CSREA Press, 2003. ISBN 1-932415-08-4.

- A. Pease and G. Sutcliffe. First-order reasoning on a large ontology. In Sutcliffe G. et al., editor, *Proc. of the Workshop on Empirically Successful Automated Reasoning in Large Theories (CADE-21)*, CEUR Workshop Proceedings 257. CEUR-WS.org, 2007.
- S. Schulz. E A brainiac theorem prover. *AI Communications*, 15(2-3):111–126, 2002. ISSN 0921-7126.