

TECHNISCHE UNIVERSITÄT DARMSTADT

Lexical-semantic resources: yet powerful resources for automatic personality classification

Xuan-Son Vu, Lucie Flekova, Lili Jiang, Iryna Gurevych
1. DDM Lab, Umeå University, Sweden
2. UKP Lab, TU Darmstadt, Germany

Global Wordnet Conference, Singapore, 2018-01-10

Outline

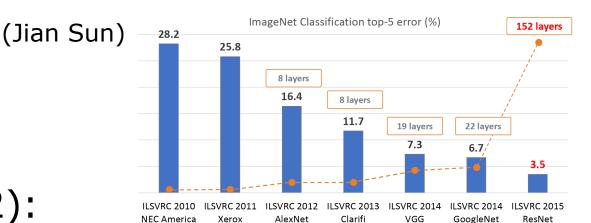
- Introduction
 - Motivation
 - Automatic Personality Profiling
- Methodology
 - System design, Feature Design & Algorithms
- Experiments
- Results and discussion
- Conclusions

- Motivation (1/2):
 - Study of personality and individual differences supporting for IR and Recommender systems.
 - Solve cold-start user problem (Flekova and Gurevych, 2015)

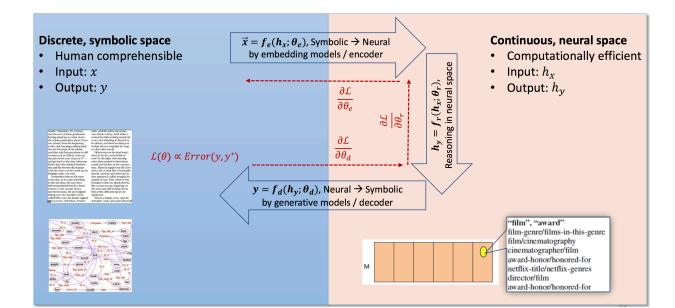
- Applying to low-resource languages
 - No personality-specific resources are available

- LIWC, MRC
- Wordnet and SentiWordNet are more popular

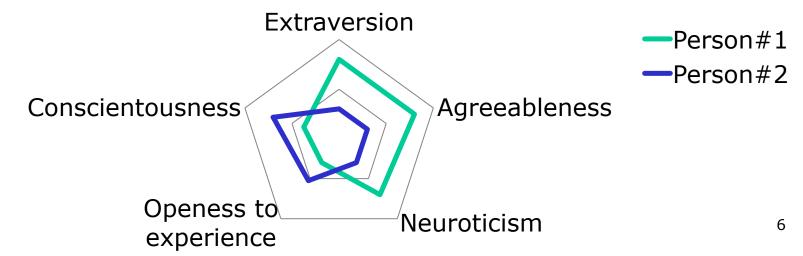
Motivation (2/2):



- Why emphasizing "yet powerful"?
 - Not a 'cool' paper when not using Deep Learning?
 - Small data
 - Reasoning



- The Big Five Factor Model of Personality (FFM)
 - Influenced many aspects of task-related individual behavior.
 - Has become standard in psychology over the last 50 years (Costa and McCrae, 2008)



• The Big Five Dimensions of Personality

- Extraversion vs. Introversion

(sociable, assertive, playful vs. aloof, reserved, shy)

- Emotional stability vs. Neuroticism

(calm, unemotional vs. insecure, anxious)

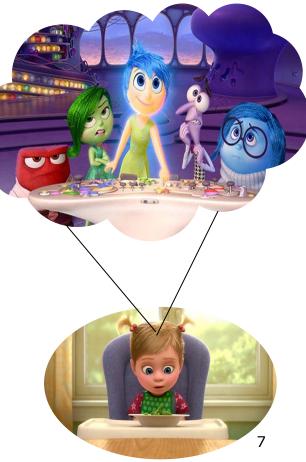
- Agreeable vs. Disagreeable

(friendly, cooperative vs. antagonistic, faultfinding)

- Conscientious vs. Unconscientious

(self-disciplined, organized vs. inefficient, careless)

- Openness to experience (intellectual, insightful vs. shallow, unimaginative)



Movie title: Inside out

2. Methodology

Dataset Overview

- 1. Facebook status updates [1]
- 2. Stream-of-consciousness texts [2]
- 3. Transcripts of Youtube videos, annotated for personality [3]
- 4. User tweets [4]
- [1] <u>http://mypersonality.org/wiki/doku.php?id=wcpr13</u>
- [2] http://mypersonality.org/wiki/doku.php?id=wcpr13
- [3] <u>https://sites.google.com/site/wcprst/home/wcpr14</u>

[4] <u>http://www.uni-weimar.de/medien/webis/events/pan-15/pan15-web/author-profiling.html</u>

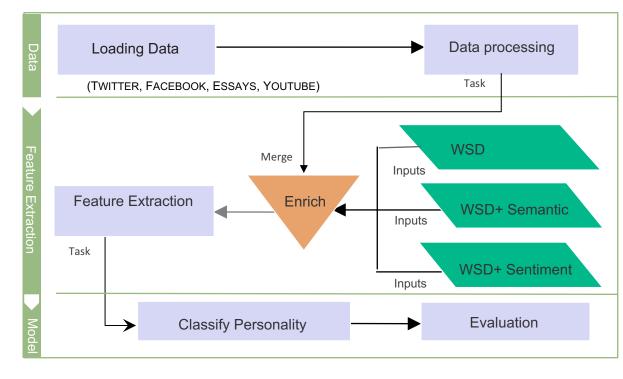
Data statistics

Dataset	#Sen	#Word	#Users	Non- standard words
TWITTER	145.7	216.8	153	51.27%
FACEBOOK	67.1	78.3	250	23.3%
ESSAYS	48.8	15.3	2469	30.85%
YOUTUBE	41.7	29.5	404	8.05%

The number of sentences (#Sen), the number of words (#Word), and the number of users (#Users). Non-standard words may be either out -of-vocabulary tokens (e.g., tmrw for `tomorrow') or in-vocabulary tok ens (e.g., wit for with in `I come wit you').

System workflow

- Implemented using UIMA framework & DKPro
 - Easy to add/remove different modules



Feature Extraction

ID	Description	
WORD	Word-level features.	
WN-WORD	Word-level features in which only words that present in WordNet are used.	
WN-MFS	Sense-level features based on the most frequent sense algo- rithm.	
WN-S-LESK	Sense-level features based on the Simplified Lesk algo- rithm.	
S_SENSE	WordNet semantic label (or WordNet supersense) fea- tures.	
SENTI	Three sentiment features in- cluding posscore, negscore, and neuscore.	

Word Sense Disambiguation

- Why applying WSD?
 - "Neurotic" and "extrovert" people use the emotion words significantly differently.
 - Neurotic people use more 1st person single pronouns
 While less positive emotional words.
 - "Openness" people use more abstract concepts
- How to apply WSD?
 - Current WSD systems perform an extremely poor performance on low frequent senses
 - Postma et al. (2016)

Word Sense Disambiguation

- Applying WSD to expand dataset with WN Lexicographer files (WN supersenses)
 - With two different WSD algorithms (i.e., MostFreq and SimLesk).
 - Adding by concatenating or as another feature

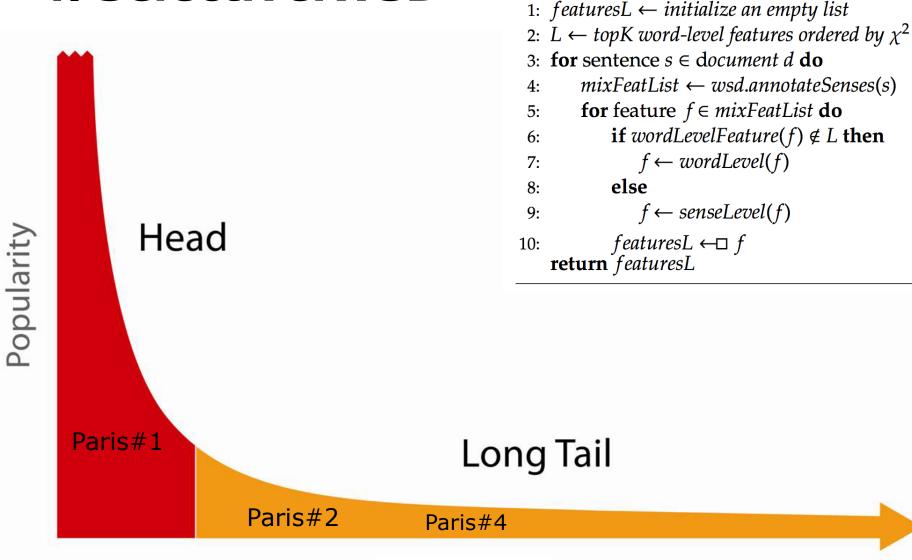
Applying sentiment lexical resource (i.e., SentiWordNet)

She loves Java coffee and Java programming WSD.MostFreq.Lex.Another.Senti

She love%1 Java%2 noun.food coffee and Ja va%3 noun.communication programming #posscore #negscore #neuscore

WSD.Lesk.Lex.Another.Senti

4. Selective.WSD



Discoverability

Procedure 1 Selective.WSD

sense-level feature list.

Input: a word-level document.

Output: a selective mixture of word-level and

3. Experimental Results

WSD vs Non.WSD

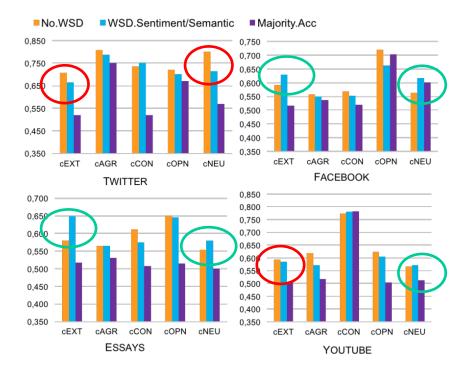


Figure 2: A comparison between not-using WSD (i.e, No.WSD) versus using WSD in a combination with sentiment/semantic features (i.e., WSD.Sentiment/Semantic) in the four datasets. The majority accuracy (i.e., Majority.Acc) is the accuracy when we predict all test instances to a major class.

Which features work most?

- The restriction to WordNet only words
 - works in 10/24 ≈ 41% of the cases, especially on ESSAYS dataset
- WSD.Sentiment/Semantic
 - improves extraversion and neuroticism ³/₄ cases

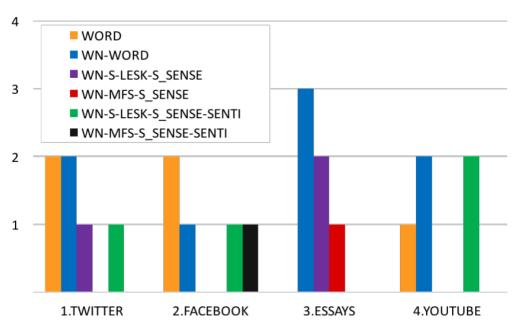


Figure 3: The overall number of times that each feature setting achieves the best performance in the four datasets.

Selective.WSD vs All.WSD

- The Selective.WSD method works better than the normal WSD method
- We increase the number of topK features, the performance will drop.

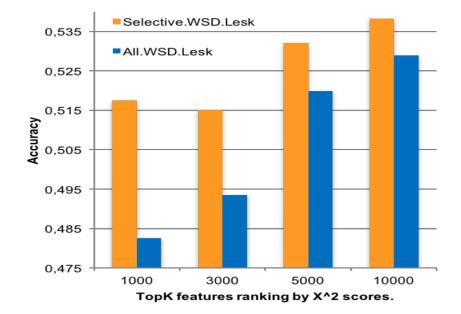


Figure 4: A test on cEXT personal trait of ESSAYS dataset to compare between Selective.WSD and All.WSD.

Comparison with the SOTA results

Table 3: Performance in comparison with the state-of-the-art results on the FACEBOOK dataset.

Trait	Majumder et al. (2017)	Ours (Majority.Acc)
cOPN	62.68	72.10 (70.40)
cCON	57.30	56.80 (52.00)
cEXT	58.09	62.10 (38.40)
cAGR	56.71	55.80 (53.60)
cNEU	59.38	61.70 (39.60)
Avg	58.83	58.64 (50.80)

Impact of WSD on APC

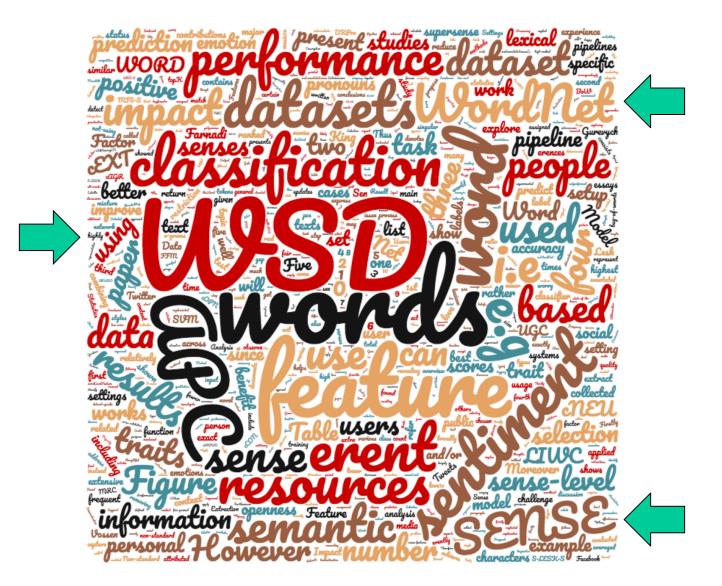
- WSD does not generally lead to an improvement in classification results
- However
 - In contrary to previous beliefs (Sanderson, 1994; Gonzalo et al., 1998), the performance of the WSD algorithms is not the major issue
 - Rather, it is the reduction of the representative scope of bag-of-words

Impact of WSD on APC

- Rather, it is the reduction of the representative scope of bag-of-words:
 - In the WN-WORD setup, the word worry is ranked to predict extraversion with chi = .007,
 - While the sense worry%1v is ranked to predict *introversion* with chi = -.004.
- While the effect of WSD itself in a BoW setup is marginal, we observe that the WSD quality is rather high

Table 4: The highest ranked features for Extraversion on the ESSAYS dataset, averaged across the 10 cross-validation folds, using the χ^2 feature selection.

Why GWC2018?



Conclusion

- Main contributions:
 - WSD and semantic and sentiment information to pose an improved performance in APC
 - Using a dictionary (e.g., WordNet, WiktionaryEN) to remove noise-features often works well in most datasets.
 - Applying WSD alone, in general, does not work in APC
 - Especially on not-well-written UGC data.
 - Our proposed Selective.WSD works better than the basic WSD
 - Through away the previous beliefs on performance of WSD
 - The performance of the WSD algorithms is the major issue for stagnating performance (Sanderson, 1994; Gonzalo et al., 1998)
 - Rather:
 - (1) the reduction of the representative scope of bag-of-words
 (2) the reduction of the impact of multi-DOS words (since the)
 - (2) the reduction of the impact of multi-POS words (since those are assigned different senses)

Thank you

